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Electro-Mechanical Actuators (EMA) are gaining prominent roles in the next generation 

fly-by-wire aircraft and spacecraft. With these roles often being safety-critical (control 

surface or landing gear actuation, for instance), the key to faster adoption of EMA in 

aerospace applications is development of accurate and reliable prognostic health 

management (PHM) systems that not only detect and identify faults, but also predict how the 

identified they affect the remaining useful life (RUL) of both the faulty component and the 

actuator as a whole. Such information can be invaluable to pilots, controllers, and 

maintenance personnel in assessing how to complete or re-plan the desired mission with a 

sufficient safety margin. A team consisting of members of NASA Ames Diagnostic & 

Prognostic Group has developed a prototype PHM system for EMA that provides coverage 

for a number of faults modes typical to this type of actuators. The diagnostic portion of the 

system is implemented using a hybrid approach which utilizes both qualitative (bond graph, 

model-based) and quantitative (data-driven) reasoners to achieve low false positive and false 

negative detection rates and a high accuracy of diagnostic output. Once a fault has been 

diagnosed, the prognostic component, which is implemented using Gaussian Process 

Regression (GPR) principles, estimates the RUL of the component that is faulted. 

Experiments were conducted both in laboratory and flight conditions to validate the PHM 

system using an innovative Flyable Electromechanical Actuator (FLEA) test stand. The test 

stand allows experimental actuators to be subjected to environmental and operating 

conditions similar to what actuators on the host aircraft are experiencing, while providing 

researchers with the capability to safely inject and monitor propagation of various fault 

modes. Prognostic run-to-failure experiments were done in laboratory conditions on ball-

screw jam and motor winding short faults. Flight experiments (albeit not run-to-failure) 

were conducted in collaboration with the US Army on UH-60 Blackhawk helicopters. The 

paper describes these experiments in detail and presents the results obtained from the PHM 

system with regard to the estimation of the RUL of the actuator.  
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Nomenclature 

PHM = Prognostic Health Management 

FLEA = Flyable Electro-mechanical Actuator testbed 

GP = Gaussian Process 

GPR = Gaussian Process Regression 

EMA = Electro-Mechanical Actuator 

EMI = Electro-Magnetic Interference 

IVHM = Integrated Vehicle Health Management 

RUL = Remaining Useful Life 

EoL = End of Life 

y(t) = observed measurement 

)(ty
)

 = measurement estimate 

r(t) = residual 

f(x) = Gaussian process (GP) 

m(x) = mean function for GP 

k(x,x’) = covariance function for GP 

y = noisy observations from the system 

x = set of training points 

ε = additive IID Gaussian noise with N(0,σn2)  

I. Introduction 

T here is an increasing trend in the designs of new aircraft and spacecraft to move to fly-by-wire controls and 

away from the more traditional hydraulic control and actuation methods.  There are several types of actuation 

mechanisms being utilized in such fly-by-wire designs, with electro-mechanical actuators being one of them.  Given 

the fact that actuators are usually some of the more safety-critical components of an aerospace system, an undetected 

or unmanaged actuator failure can lead to serious consequences – as has happened on multiple occasions in the past.  

For instance, the tragedy of Alaska Airlines MD-83 Flight 261 occurred due to horizontal stabilizer electro-

mechanical actuator failing because of insufficient lubrication and excessive wear of its jack screw
1
. Even though 

actuators have been studied extensively from a functional point of view – in order to help develop new and 

improved designs – studies from a health management point of view have been rather limited.  The reason for that is 

largely attributed to unavailability of operational fault data from fielded applications and lack of experimental 

studies with seeded fault tests due to high risks and costs involved. EMAs in aerospace systems operate in complex 

environmental conditions, so their inherent characteristics need to be studied thoroughly in order to be 

distinguishable in flight environment and enable effective diagnostics and prognostics with reduced uncertainty.  

This calls for a systematic, methodical effort towards understanding the EMAs and their behavior under various 

fault conditions through affordable, but realistic experiments. 

This is the kind of approach that our team strived to adopt in pursuing this research.  In the early stages of the 

project, a thorough literature review to understand the state-of-the-art at the time was conducted.  Partnerships to 

exchange information were established with some of the other organizations active in this area.  Examples of prior 

efforts in this field include research into potential EMA faults modes
2, 3

, fault modes modeling for diagnostic and 

prognostic purposes
4-7

, diagnostic and prognostic algorithm development
4, 5, 8, 9

, and experimental testing
6-10

.  While 

these and other worthy efforts addressed some of the issues required for EMA prognostic health management 

separately, the authors felt that there was still a need for further work on integrated diagnostic/prognostic health 

management systems for EMA and test methods for them in relevant conditions.  This is what motivated the 

research and experiments described in this paper. 

II. Approach 

As mentioned in the introduction, the team strived to adhere to a methodical approach to EMA health 

management research.  The work began by conducting an extensive literature review, where prior work at Moog 

Corporation, Impact Technologies, University of Texas Austin
11

, among other institutions, was examined.  The team 

also collaborated with Moog Corporation and Impact Technologies on reviewing existing Failure Modes, Effects, 

and Criticality Analysis (FMECA) documents in order to compile a prioritized list of fault modes for a further study.  
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Like any complex mechanism, EMAs could, potentially, experience a variety of fault modes, from mechanical jams 

to power transistor deterioration.  It would have been impossible to cover all of them in this work; therefore the fault 

modes that were deemed the most likely and/or most consequential were included in the list.   

Given the priorities list of EMA faults, the Ames team (in collaboration, once again, with Impact, Moog, 

Georgia Institute of Technology, and others) embarked on physical modeling efforts.  The physics-based approach 

was chosen as one with the most promise to provide an accurate prognostic picture of fault progression, but with the 

understanding that it would be complemented by data-driven machine learning techniques, when appropriate.  

Modeling efforts ranged, for instance, from creation of high-level models for EMA operation
10, 12

, to more in-depth 

studies of motion of bearing balls inside ballscrew raceways and effects of lubricants on the collision of these balls 

with each other and the metal surfaces of the ballscrew. Models for winding short effects
9
 and motor temperature in 

case of progressive winding shorts were also developed. While not all of these models ended up being selected for 

use with health management algorithms, all of them provided crucial insights into the specifics of EMA operation in 

different conditions. 

Development of health management (diagnostic and prognostic) algorithms followed.  First in line was a 

diagnostic system based on a neural network
13

.  It was capable of diagnosing such fault modes as ballscrew return-

channel jams, surface spalls, and sensor faults of varying magnitudes.  For the next version of the diagnostic system 

a hybrid (model-based/data-driven) approach was adopted.  This system is described in detail in Section III. Finally, 

a prognostic system covering a subset of faults was created using Gaussian Process Regression methodology (also 

described in Section III).  Work to expand and improve both diagnostic and prognostic algorithms is currently 

underway. 

In order to verify performance of the algorithms in relevant environment, EMA testbeds were utilized.  The first 

one was constructed at Moog Corporation.  Data collected on that test stand was used in verifying performance of 

the neural network diagnostic classifier
13

. While a laboratory test stand made it is possible to simulate some of the 

desired flight conditions on the ground, testing equipment and algorithms in the presence of vibrations, noise, G-

loads, and temperature changes inherent to flight was deemed to be important. Thus was born the idea for the FLEA 

– Flyable Electromechanical Actuator testbed. 

The FLEA is a self-contained, lightweight test fixture containing three actuators: one nominal, one injected with 

faults, and the third providing dynamic load.  The load is switched in-flight from the healthy to the faulty test 

actuator, thus allowing to collect both baseline and off-nominal sensor data under the same conditions. The testbed 

flies on a host aircraft, mimicking one of its control surface actuators. Motion and load profiles for whichever test 

actuator is active at that moment are derived from the corresponding real-time values for the host aircraft actuator 

Data collected on the stand is routed to a prognostic health management system that monitors actuators for faults 

and, if a fault is detected, predicts the effects on actuator performance and its remaining useful life.  While the main 

purpose of the FLEA is to perform data collection in real-time flight conditions, experiments utilizing FLEA can 

(and have) been performed in a laboratory.  Laboratory experiments are useful for verifying and troubleshooting 

performance using well-defined scenarios.  Flight and laboratory experiments involving the FLEA are described 

extensively in Section V.  Careful consideration was given to design of these experiments, especially to developing 

fault injection techniques that are as realistic as possible – both in terms of their magnitude and, for gradually 

growing faults, in terms of time progression from fault to failure. These techniques too are also covered in Section 

V.   

III. FLEA Testbed 

 

The key idea in designing and building the FLEA test stand used in the experiments was for it to be lightweight, 

self-contained, and capable of supporting three different actuators: one nominal, one injected with faults, and the 

third providing dynamic load. The load is switched in-flight from the healthy to the faulty test actuator, thus 

providing the fault injection capability for the test stand without having to modify the actuator in flight. The stand is 

connected to the aircraft data bus and the motion profiles for the test actuators, as well as the load applied to them, 

are derived from the corresponding real-time values for one of the aircraft’s control surfaces. Being a largely self-

contained unit, the FLEA only requires interfaces to the aircraft data bus and power.  An engineering model of the 

FLEA is illustrated in Figure 1 and the actual FLEA is shown in Figure 2. 
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The frame is constructed from T-slotted extruded aluminum segments connected with brackets and fasteners.  

The 1 cm thick center plate is attached to the frame and used for mounting the actuators and other components of the 

stand.  Rigidity of the central plate was an important design consideration; therefore analysis was performed that 

showed only negligible bending under the expected loads. Before a flight, the sides of the chassis (except for the 

top) are covered with 3 mm thick aluminum plates.  These plates serve a dual purpose: as an additional safety 

measure in case of a crash and to provide EMI protection.  The top portion of the stand, where EMI emissions from 

electronic components are contained by the center plate, is protected with a thick panel of high-strength Lexan™, 

which allows the operator to visually observe the test in progress. 

 The overall weight of the FLEA, with shielding attached, is approximately 35 kg.  The stand is typically 

mounted either in the aforementioned instrumentation rack or strapped/bolted to the floor of the fuselage. The 

processing unit, running the operating system, data acquisition, control, and health management software, is based 

on an off-the-shelf Pentium4 3.2GHz ATX motherboard.  Storage is provided by two solid-state drives, one for the 

operating and control software, the other dedicated to data storage.  Solid-state drives were chosen over traditional 

hard drives for their ability to operate at high altitudes without the need for pressurization. 

 

The data acquisition system consists of two NI 6259 cards and supports a comprehensive sensor suite, described 

in Table 1.  One of the cards collects low speed (1 KHz) data from current, voltage and temperature sensors.  The 

other reads accelerometer channels at a higher speed (20 KHz). The acquired data is used for a variety of purposes, 

including plotting for visual inspection, saving to file for future analysis, and sending to diagnoser and prognoser for 

online reasoning.  The actuators are controlled through a multi-axis Galil motion controller.  Coupling of test 

actuators to the load actuator is accomplished via electro-magnets with only one test actuator at a time is normally 

coupled to the load actuator.  

The test articles used in the FLEA at present are UltraMotion Bug actuators (illustrated in Figure 3). While 

architecturally equivalent to the larger (and considerably more expensive flight-qualified EMAs), these off-the-shelf 

units allow the team to conduct run-to-failure experiments in a cost-effective manner.  The faults are injected into 

the test articles in the following manner: 

 

30 cm 

45 cm 

45 cm 

 

Figure 1 : FLEA Engineering Model 
 

Figure 2 : FLEA aboard an aircraft with 

protective panels mounted 

Table 1 : FLEA Sensor Suite 

Sensor Qty Type Location 

Load cell 1 Omega LC703-75 Between the load actuator and the 

test actuator 

Accelerometer 2 Endevco 7253C On the nut of the ball screw 

Thermocouple 4 T type On the ball screw nut and motor 

housing 

Rotary encoder 2 UltraMotion E5DIFF optical encoder with 

differential output 

On the test actuator motors 

Linear 

potentiometer 

1 UltraMotion precision linear potentiometer Along the load actuator screw 

Voltage Sensor 3 Custom Motor controller boards 

Current sensor 3 Custom Motor Controller Boards 
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• Jam: via a mechanism mounted on the return 

channel of the ballscrew that allows to stop 

circulation of the bearing balls through the circuit 

• Spall: by introducing cuts of various geometries 

via a precise electro-static discharge process.  The 

initial size and subsequent growth of these cuts 

are confirmed by using an optical inspection and 

measurement system 

• Motor failure: injected by redirecting current from 

the affected motor into a sink load 

• Sensor faults (bias, drift, scaling, and complete 

failure): software-injected into the measurements 

collected by the data acquisition system 

 

The system software consists of an actuator control system, data acquisition system, flight interface system, a 

diagnostic system and a prognostic system. The higher level software is implemented in LabVIEW™; however the 

underlying algorithms for the diagnoser and prognoser are implemented in MATLAB™.  The diagnostic system is 

responsible for monitoring the sensor data and determining whether any faults are present in the system. After the 

diagnoser has determined that a fault has occurred in the system, the prognostic system is tasked with monitoring the 

sensor data and determining how the fault is progressing and how long of a useful life is remaining for the system. 

The details of the diagnostic and prognostic algorithms are described in Section IV. The LabVIEW interface is 

designed to send the acquired data to the prognoser and display the remaining useful life estimates received from it. 

Other software elements include flight interface modules for getting data from different types of host aircraft and 

software for running experiments under various conditions in laboratory environment. 

 

IV. Health Management System 

A. Diagnostic System 

 

 

Figure 3 : UltraMotion Bug Actuator 

 

Figure 4 : Hybrid Diagnosis Architecture 
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Diagnostic approaches can be broadly divided into two types: model-based and data-driven
14

. Model-based 

schemes rely on a system model built from a priori knowledge about the system, while data-driven schemes do not 

require such models but instead require large sets of exemplar failure data, which is often not available. Some of the 

sensors available in the EMA, such as current and voltage sensor outputs can be modeled using physics-based 

differential equations, and can be used for model-based diagnosis of faults in EMA. The modeling of 

accelerometers, however, is non-trivial, and hence, a data-driven, feature-based diagnosis approach would be better-

suited to leverage accelerometer information for disambiguating faults. Our approach to EMA diagnostics 

synergistically combines the model-based and data-driven diagnosis techniques in order to improve upon either 

approach implemented individually.  

 

The model-based approach works well when we are able to derive analytical models for all the faults under 

consideration, and how these faults affect the observed measurements. However it may not be possible to do so for 

all faults. On the flip side the feature-driven approach requires a lot of data under varying experimental conditions 

for training the classifier. Additionally, when the classifier has to consider all faults and other experimental 

conditions, the size and complexity of the classifier becomes intractable.  

In this paper a hybrid method that combines these two approaches, as illustrated in Figure 4 (TRANSCEND 

approach
14

), is adopted as the basis for the model-based diagnostic system. The features to be used in the feature-

driven approach are selected based on an offline diagnosability analysis.  Our hybrid approach consists of an offline 

and an online stage.  

 

1. Offline Stage 

 

In the offline stage we first derive a Bond Graph (BG) model
15

 of the EMA system whose health needs to be 

monitored. We then perform a qualitative diagnosability- analysis on this model. The BG model can be used to 

generate qualitative signatures for all faults represented by changes in the parameters of the BG. By comparing the 

qualitative signatures we can identify the ambiguity groups (groups of faults that have the similar fault signatures). 

These groups represent faults that need to be disambiguated using the feature-driven approach.  

For each ambiguity group, a set of features are extracted, (using domain knowledge or by experimentation) that 

are identified to contain diagnostic information to disambiguate the maximal number of faults in that group. This 

results in a fault feature table that indicates how specific features are influenced by faults.  

 

2. Online Stage 

 

The online stage is carried out in two phases. In the first phase the TRANSCEND approach
14

 is used to observe the 

system, detect and qualitatively isolate fault ambiguity groups. In the second phase the isolated ambiguity group 

triggers the selection of rows from the fault-feature table. These rows correspond to the faults in the ambiguity 

group. The selected sub-table can then be converted to a diagnoser tree using the measurement selection procedure
15

. 

The nodes of this diagnosis tree are groups of faults and the edges represent specific values for features. The root 

of the tree is the starting ambiguity group. At each level, of the tree features are selected that partition the ambiguity 

group in the most balanced fashion. This can be formally specified as the partitioning with the least difference 

between the largest and smallest partitions. Once the best feature has been identified, the ambiguity group is 

partitioned into sub-groups corresponding to the possible values for the selected feature (one sub-group for each 

possible feature value). For each sub group of size greater than 1 the next best feature is selected, which creates the 

most balanced partitions. This process continues until only sub-groups of size 1 are left or there are no more features 

left to select. If there are any sub-groups of size greater than 1 then it indicates indistinguishable faults.  

Once the diagnoser tree has been identified, fault isolation is performed by walking down this tree from the root 

node. First the feature associated with edges from the root node is computed. Depending on the value for the feature, 

the corresponding partition of the ambiguity group becomes our current belief. Again, the feature associated with 

that node is computed to further reduce the size of the current ambiguity group until a leaf node of the tree is 

reached. At this point the fault isolation is complete and the final ambiguity group (or aggregate faults) can be 

reported as the diagnosis. 

The construction of the diagnoser tree can, actually, be done offline for the set of identified ambiguity groups in 

order to reduce some computation at run time. However if more computational power is available, a ‘lazy’ approach 

might be best. In the ‘lazy’ approach, the entire diagnoser tree is not constructed. Rather only the first best feature is 

identified. This feature is then computed and the ambiguity group reduced. This procedure (computing only first 
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best feature) is refor the current ambiguity group. Again this process is repeated until a single fault has been isolated 

or all features have been computed.  

B. Prognostic System 
 

Once a fault is detected and isolated, its rate of evolution must be tracked and assessment for the remaining 

useful life (RUL) should be made to manage contingency in a timely and safe manner. A Gaussian process 

regression (GPR) based prediction algorithm was chosen. GPR does not need explicit fault growth models and can 

be made computationally less expensive by sampling techniques. Further it provides variance bounds around the 

predicted trajectory to represent the associated confidence. 

A Gaussian Process (GP) is a collection of random variables any finite number of which has a joint Gaussian 

distribution
18

. A real GP f(x) is fully specified by its mean function m(x) and co-variance function k(x,x’) defined 

as: 

 

[ ])()( xfExm = ,                           (1) 

( )( )[ ])'()'()()()',( xmxfxmxfExxk −−=                      (2) 

( ))',(),(~)( xxkxmGPxf                          (3) 

 

Domain knowledge available from the process is encoded by the covariance function that defines the relationship 

between data points in a time series. Ideally, GPR requires prior knowledge about the form of covariance function, 

which may be inferred from the application domain. Covariance functions consist of various hyper-parameters that 

define the temporal characteristics of fault growth. Setting the right values of such hyper-parameters is key in 

learning the desired functions. A covariance function must be specified a priori, but corresponding hyper-

parameters can be learned from the training data using a gradient-based optimizer - such as maximizing the marginal 

likelihood of the observed data with respect to hyper-parameters
3
.  

      It is expected that once the diagnostic system indicate the onset of a fault mode, the prognostic system is 

triggered. Data is processed in real-time to extract relevant features, which are used by the GPR algorithm for 

training during initial period. The longer is the training period, the better are the chances for the algorithm to learn 

the true fault growth characteristics. However, to strike a balance between the length of the training period and the 

risk of missing out on a sufficient prediction horizon a limit is set for the training period. Once this limit is reached 

the algorithm starts predicting fault growth trajectories. End of Life (EoL) is subsequently determined by where 

these trajectories intersect the preset fault level threshold. As time progresses, the GPR model is updated with new 

observations and, subsequently, the predictions are updated as well. 

Owing to its computational complexity of O(n
3
) GPR runs into scalability issues if a long data history is used. 

However, by sampling the training points from the accumulated observation data for the given system this problem 

can be addressed. A suitable number of data points are sampled uniformly from the all available history data to train 

the system.  Using a maximum-likelihood optimization these data points are used to determine the best fitting hyper 

parameters for the chosen covariance function. It must be noted that since this process involves numerical methods 

the outcome of the optimization often depends on the initialization of the hyper parameters, which adds to 

uncertainty in the predicted outcomes.  In our implementation this uncertainty is characterized and handled in two 

ways. First, at each prediction time instant (tp) a large (p~50) number of samples of k data points are drawn from the 

observed data. Then p different GP models are trained based on these p different sample sets. By averaging the 

results from these p different GPRs we expect to eliminate variability emerging from random sampling, while still 

keeping the computational cost low. In other words, computational complexity is reduced from O(n
3
) to O(p.k

3
), 

where p, k<<n as time passes by. A similar concept has been explored previously where temporal sampling was used 

to parallelize the algorithm and reduce its computational complexity
19

. 

V. Experiments 

A. Diagnostic Experiments 

 

One of the first steps for model-based diagnosis is to estimate the model parameters.  The state-space equations 

representing the physics-based nominal model of the EMA are given below. 
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( ),
1

ωmKRiV
Ldt

di
−−=                        (4) 

( )Lt BiK
Jdt

d
τω

ω
−−=

1
                       (5) 

where i denotes the current drawn by the actuator; ω denotes the angular velocity; and Kt and Km denote the 

torque and motor constants, respectively. The EMA is essentially modeled as a DC motor with input voltage, V; 

with winding inductance, L; winding resistance, R; damping coefficient, B; and opposing load torque, τL.  

To aid parameter estimation, nominal data was collected by running the FLEA under different load profiles. 

Then we developed a MATLAB Simulink model of the EMA that accepts the same inputs that were given to the 

FLEA, and estimate the variables that are measured by the available sensors. Note that in this estimation scheme, all 

but the accelerometer readings were used, since, as explained earlier, the modeling of accelerometers is non-trivial. 

Finally, we ran an optimization script in MATLAB to estimate model parameters that would minimize the error 

between the actual and predicted values of the available measurements. The estimated parameter values are then 

included in the state-space equations of the particle filter observer to generate high fidelity estimates of unknown 

hidden states. The BG model of the actuator is used to derive the Temporal Causal Graph which, in turn, was 

instrumental in deriving the qualitative fault signatures for the different faults. These fault signatures are used in the 

qualitative fault isolation.  

The fault-feature signature matrix for some EMA faults includes two accelerometer features. In this work, we 

consider the standard deviation of each accelerometer reading as a feature. The signatures represent the fact as to 

whether or not a feature will be affected by a fault, and denoted by a ‘1’ or ‘0’, respectively. Based on this fault-

feature signature matrix, given the present set of fault hypotheses, we generate a tree data-structure that gives the 

subset of features, and the sequence in which they should be used to refine the fault hypotheses set to (ideally) a 

singleton set the fastest.  

Data is acquired continuously and sent to the diagnoser (which is initialized when the system control software 

starts).  An observer synthesized from the bond graph models uses this data to determine if a fault has been detected. 

The qualitative fault isolation code attempts to isolate the faults resulting in an ambiguity group. The next best 

feature selector as well as the feature extractor are also implemented in MATLAB. The fault detection flag as well 

as the ambiguity group as it is being refined is communicated back to the LabVIEW user interface module.  

FLEA consists of two test actuators, one of which is nominal and other being faulty. Different types of faulty 

actuators (jammed, spalled, etc.) can be switched in to reproduce the occurrence of the corresponding fault.  The 

nominal actuator is active for certain duration of time, then the control system will switch operation to the faulty 

actuator (this switch will be transparent to the diagnoser). The diagnoser is expected to continuously monitor the 

data and determine if and when the switch occurred (identifying it as an occurrence of a fault in the nominal actuator 

rather than a switch event). 

The diagnoser was run during execution of a set of pre-defined scenarios with varying position (sine, trapezoidal, 

triangular, sine sweep) profiles and load (constant load between -70 and +70 pounds) profiles. Subsets of these 

scenarios were used for which included hardware-injected (jam, motor failure, and spall), as well as software-

injected faults (sensor faults).  

B. Prognostic Experiments 

 

As determined during the literature review and conversations with actuator manufacturers and aircraft 

companies, jam in the return channel of a ball-screw actuator is a fault that is of a serious concern in EMA 

applications The fault scenario that was picked as motivation for this series of experiments was the following: 

assuming that the jam occurs in-flight and the actuator is still needed to land the aircraft safely, can we estimate the 

remaining useful life given that the motion and load profiles remain the same as for a healthy actuator?  If a 

helicopter is used as the example aircraft and this particular actuator controls the pitch angle of the main rotor blades 

(a critical function to safety of flight), how much time would there be available before the vehicle needed to land? 

To set this experiment up, jam was injected into the return channel of an actuator using the technique described 

in subsection A.  A region then was picked from the manufacturer-defined performance specification where a 

healthy actuator can operate continuously for prolonged periods of time (i.e. rated for a 100% duty cycle).  Motion 

and load profiles were designed to stay inside this region.  Motion profile was a sine wave with 8 cm (3.15 in) peak-

to-peak amplitude and 0.5 Hz frequency.  Load was constant throughout a scenario at -50, +40, or +50 lbs.  Motion 

was performed in 30 second intervals, with 15 second cool-down periods in-between.  Throughout the experiments 
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current to load and test actuator combined was limited to 6A at 28V DC at all times.  Increased friction from the jam 

in the ballscrew nut resulted in additional current directed by the controller into the test actuator motor in order to 

attempt performing the same motion profile under the same load as a nominal actuator. This above-nominal current 

resulted in gradual heat build-up inside motor housing - despite the cool-down periods between motion intervals.  

Excessive heat eventually caused damage of winding insulation, short circuit, and failure of the motor. Figure 5 

shows the run-to-failure experiments data. 

C. Flight Experiments on UH-60 helicopters 

There have been several FLEA experiments flown on UH-60 helicopters to date.  The experiments, which were 

conducted at NASA Ames on the helicopters operated by US Army Aeroflightdynamics Directorate, provided 

valuable data sets on nominal and spall-injected actuators. This section offers a brief overview of the data collected 

on the UH-60, with a more extensive description and analysis to be done in a separate publication. 
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Figure 5 : FLEA Run-to-failure Data 

 

Figure 6: Test Actuator Motion Profile during a 

UH-60 Flight Segment 

 

Figure 7: Desired Load Profile during a UH-60 

Flight Segment 
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During the experiments, the test stand executed 

rigorous motion sequences, matching those of the 

target UH-60 actuator (forward primary servo, an 

actuator responsible for pitch control of the main rotor 

blades).  Load profiles executed by the FLEA’s load 

actuator were derived using flight conditions 

information (obtained from the aircraft data bus), as 

well as some of the models developed by NASA's 

Subsonic Rotary Wing Project. Figure 6 shows a 

typical motion profile executed over a period of about 

twenty minutes.  Figure 7 shows the desired 

(computed) load profile. Spall fault was injected 

during the flight by switching the load path from the 

nominal to the faulty actuator. All the usual sensor 

readings were recorded. 

VI. Results 

 

 The results are listed in Table 2. Recall that the 

final outcome of our combined diagnosis approach can 

be a set of ambiguous faults. We consider the 

diagnosis to be correct as long as the ambiguous fault 

set is minimal and the true injected fault is included in 

this set.  

Initial diagnostic experiments, with jam and spall 

faults injected, conducted aboard UH-60 helicopters 

showed promise as well, however more data needs to be collected to reach any quantitative conclusions. 

In case of the prognostic experiments, the initial set demonstrated that motor failure would typically occur when the 

temperature, as measured on the surface of the motor housing, reached approximately 88 degrees Celsius.  Complete 

failure would typically be preceded by odor of burning winding insulation and smoke emanating from the motor 

housing.  Figure 5 illustrates fault progression for three of the runs. The reader may observe that one of the motors 

on the chart lasted longer than the other two, although judging by the symptoms, damage to its motor windings 

insulation started to occur in approximately the same temperature region as for the other two specimens. Prognostic 

algorithm was executed on collected data, using motor housing measurement as the feature, and its EoL predictions 
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Figure 8 : Remaining Useful Life Prediction under three different Load Conditions 

Table 2: Diagnostic Results 

Fault Scenarios Correct Accuracy 

Nominal  134  133  99.25  

Current Bias  15  15  100  

Current Dead  15  15  100  

Current Drift  15  15  100  

Position Sensor Failure  21  13  61.9  

Current Scaling  15  15  100  

Jam  15  10  66.67  

Motor Failure  15  15  100  

Spall  15  15  100  

Temp Bias  15  15  100  

Temp Dead  15  15  100  

Temp Drift  15  15  100  

Temp Scaling  15  15  100  

Total  320  306  95.625  
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were then compared to the actual 

failure times for the test articles.  

Predictions were made at an 

approximately half-way point between 

the onset of detectable damage and 

EoL.  The point of onset of detectable 

damage in an experiment such as this 

can be defined in a number of different 

ways.  For the analysis presented 

below, this point was chosen rather 

conservatively – at 40 degrees Celsius, 

the settling temperature of a nominal actuator executing the same motion profiles under the same class of loads.  

It was assumed that operating above this temperature begins the process of winding insulation deterioration. 

Figure 8 demonstrates remaining useful life predictions on the three runs depicted on Figure 5.  Failure for the motor 

in the next experiment, with a higher, +50 lbs (compressive) load, occurs faster, in only about 640 seconds. The last 

scenario illustrates why it was deemed to be important to exercise the actuators not only in compressive direction, 

but also in tensile.  The general feature trajectory to failure appears to be somewhat different from the compressive 

runs and the EoL is not reached as quickly as in case of an equivalent compressive load.  Still, the prognostic 

algorithm, using the same covariance function and hyper parameter initialization strategy, was able to adapt and 

predict the EoL with a respectable degree of error – only about 8%. Table 3 summarizes the prediction results for the 

above experiments.  In addition to predictions made at t p1, predictions were also made at approximately tp2=70% and 

tp3=85% of remaining useful life. 

Initial diagnostic experiments, with jam and spall faults injected, conducted aboard UH-60 helicopters showed 

promise as well, however more data needs to be collected to reach any quantitative conclusions. 

VII. Conclusions 

The work described herein is aimed to advance prognostic health management solutions for electro-mechanical 

actuators and, thus, increase their reliability and attractiveness to designers of the next generation aircraft and 

spacecraft.  In pursuit of this goal the team adopted a systematic approach by starting with EMA FMECA reviews, 

consultations with EMA manufacturers, and extensive literature reviews of previous efforts.  Based on the acquired 

knowledge, nominal/off-nominal physics models and prognostic health management algorithms were developed.  In 

order to aid with development of the algorithms and validate them on realistic data, a testbed capable of supporting 

experiments in both laboratory and flight environment was developed. Test actuators with architectures similar to 

potential flight-certified units were obtained for the purposes of testing and realistic fault injection methods were 

designed. Several hundred fault scenarios were created, using permutations of position and load profiles, as well as 

fault severity levels.  The diagnostic system was tested extensively on these scenarios, with the test results 

demonstrating high accuracy and low numbers of false positive and false negative diagnoses. The prognostic system 

was utilized to track fault progression in some of the fault scenarios, predicting the remaining useful life of the 

actuator. A series of run-to-failure experiments were conducted to validate its performance, with the resulting error 

in predicting time to failure generally lesser than 10% error. While a more robust validation procedure would require 

dozens more experiments executed under the same conditions (and, consequently, more test articles destroyed), the 

current results already demonstrate the potential for predicting fault progression in this type of devices.  More 

prognostic experiments are planned for the next phase of this work, including investigation and comparison of other 

prognostic algorithms (such as various types of Particle Filter and GPR), addition of new fault types, and execution 

of prognostic experiments in flight environment. 
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Table 3: Prognostic Predictions 

Load Level (lbs) Direction tp MAPE (%) 2σ(s)

+40 Push 890 6.62 215

+50 Push 360 4.76 60

-50 Pull 890 8.02 338
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