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ABSTRACT 

The ability to utilize prognostic system health information 

in operational decision making, especially when fused with 

information about future operational, environmental, and 

mission requirements, is becoming desirable for both 

manned and unmanned aerospace vehicles.  A vehicle 

capable of evaluating its own health state and making (or 

assisting the crew in making) decisions with respect to its 

system health evolution over time will be able to go further 

and accomplish more mission objectives than a vehicle fully 

dependent on human control. This paper describes the 

development of a hardware testbed for integration and 

testing of prognostics-enabled decision making 

technologies. Although the testbed is based on a planetary 

rover platform (K11), the algorithms being developed on it 

are expected to be applicable to a variety of aerospace 

vehicle types, from unmanned aerial vehicles and deep 

space probes to manned aircraft and spacecraft. A variety of 

injectable fault modes is being investigated for electrical, 

mechanical, and power subsystems of the testbed.  A 

software simulator of the K11 has been developed, for both 

nominal and off-nominal operating modes, which allows 

prototyping and validation of algorithms prior to their 

deployment on hardware. The simulator can also aid in the 

decision-making process. The testbed is designed to have 

interfaces that allow reasoning software to be integrated and 

tested quickly, making it possible to evaluate and compare 

algorithms of various types and from different sources. 

Currently, algorithms developed (or being developed) at 

NASA Ames - a diagnostic system, a prognostic system, a 

decision-making module, a planner, and an executive - are 

being used to complete the software architecture and 

validate design of the testbed. 

1. INTRODUCTION 

Over the last several years, testbeds have been constructed 

at NASA and elsewhere for the purpose of diagnostic and 

prognostic research on components important to aerospace 

vehicles: electronics, actuators, batteries, and others. For 

examples, please refer to (Poll, et al., 2007), (Smith, et al., 

2009), (Balaban, Saxena, Narasimhan, Roychoudhury, 

Goebel, & Koopmans, 2010),  However, there still remained 

a need for a testbed that supported development of 

algorithms performing reasoning on both the component 

and system levels, and optimizing decision-making with 

system health information taken into account. Such a testbed 

would also, ideally, be inexpensive to operate and not 

require lengthy experiment setup times. The main categories 

of tasks to be performed on the testbed were defined as the 

following: (1) development of system-level prognostics-

enabled decision making (PDM) algorithms; (2) maturation 
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and standardization of interfaces between various reasoning 

algorithms; (3) performance comparison among the 

algorithms from different organizations; and (4) generation 

of publicly available datasets for enabling further research 

in PDM. 

Adding decision optimization capability to a 

diagnostic/prognostic health management system will allow 

to not only determine if a vehicle component is failing and 

how long would it take for it to fail completely, but also to 

use that information to take (or suggest) actions that can 

optimize vehicle maintenance, ensure mission safety, or 

extend mission duration. Depending on the prediction time 

horizon for the fault, the character of these actions can vary. 

If a fault is expected to develop into a complete failure in a 

matter of seconds, a rapid controller reconfiguration, for 

example, may be required. If the fault progression takes 

minutes then, perhaps, reconfiguration of the vehicle (such 

as switching from the low gain antenna to the high gain 

antenna) can help remedy the situation. Finally, if the 

remaining useful life (RUL) for the faulty component is 

measured in hours, days, weeks, or longer, a new mission 

plan or adjustments to the logistics chain may be warranted 

(often in conjunction with lower level actions). 

While eventually an aerial test vehicle, such as an 

unmanned fixed wing airplane or a helicopter, would allow 

testing of the aforementioned technologies on complex 

scenarios and with motion in three-dimensional space, 

operating such a testbed is often expensive. A single flight 

hour often requires many days of preparation. Safety 

requirements for an aerial test vehicle, even without a 

human onboard, are also usually quite stringent. In contrast, 

a rover whose movement is restricted to two dimensions can 

operate at low speeds in a controlled environment, making 

experiments easier and safer to set up. The experiments can 

still involve motion, complex subsystems interactions, and 

elaborate mission plans, but the possibility of a dangerous 

situation occurring is reduced significantly.  For 

technologies in early phases of development in particular, a 

land vehicle platform could provide a suitable initial test 

environment for the majority of development goals at a 

fraction of the cost of an aerial vehicle, usually with a clear 

transition path to the latter. 

Guided by the above reasons and requirements, an effort 

was started to develop such a platform on the basis of the 

K11, a rover originally slated to serve as a robotic 

technologies test vehicle in the Antarctic (Lachat, Krebs, 

Thueer, & Siegwart, 2006).  The rover equipment (such as 

its batteries) was updated and its sensor suite was expanded. 

A key distinction from other planetary rover development 

efforts should be stressed, however. The focus of this 

research is not to develop next-generation planetary rover 

hardware, but rather to use the K11 rover platform to create 

a realistic environment for testing novel PDM algorithms. 

These algorithms would then be used as blueprints by other 

organizations in order to create PDM functionality for their 

particular applications. 

Fault modes in components that are common to various 

types of vehicles (such as electric motors, batteries, or 

control electronics) were identified and injection methods 

for some of them were developed – with as much realism as 

practical. A software simulator, meant for allowing rapid 

validation of autonomy algorithms and for providing 

optimization guidance during hardware-in-the-loop 

experiments, was developed as well. While for the time 

being algorithms developed at NASA Ames are being used 

to populate the autonomy architecture on the K11, 

algorithms from other sources could be tested and evaluated 

in the future.  

The next section of the paper, Section 2 focuses on the 

testbed hardware, while Section 3 summarizes work on the 

simulator to date, including experimental validation of the 

models. Section 4 describes the current reasoning software 

suite being deployed on the testbed and Section 5 provides a 

summary of the accomplishments and outlines potential 

future work. 

2. TESTBED 

The following section consists of three main parts: the first 

part describes the hardware of the testbed, including its 

sensor suite; the second focuses on the testbed (core) 

software; and the third one describes the methods used for 

fault injection. It should be noted that there is a distinction 

made in this work between core software and reasoning 

(including PDM) software. Examples in the former category 

include the operating system, the middleware providing 

communication between components, the data acquisition 

software, the low-level drivers – essentially the elements 

that enable the K11 to perform all of its functions under 

direct human control. The reasoning package, on the other 

hand, is the software that lessens or completely removes the 

dependence on a human operator.  PDM software is what 

constitutes the test article for this testbed and its elements 

will be swapped in and out depending on the test plan.  The 

current set of PDM elements is described in Section 3. 

2.1. Hardware 

The K11 is a four-wheeled rover (Figure 5) that was initially 

developed by the Intelligent Robotics Group (IRG) at 

NASA Ames to be an Antarctic heavy explorer. It had a 

design capacity to transport 100 kilograms of payload across 

ice and frozen tundra (Lachat, Krebs, Thueer, & Siegwart, 

2006). 

The rover was also previously used in experiments to test 

power consumption models and in a gearing optimization 

study. It has been tested on various types of terrain, 

including snow. The lightweight chassis was designed and 

built by BlueBotics SA. It consists of an H-structure and a 
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joint around the roll axis to ensure that the wheels stay in 

contact with the ground on uneven terrain. The mass of the 

rover without the payload is roughly 140 kg. Its dimensions 

are approximately 1.4m x 1.1m x 0.63m.Each wheel on the 

K11 is driven by an independent 250 Watt graphite-brush 

motor from Maxon Motors equipped with an optical 

encoder. The wheels are connected to the motors through a 

bearing and gearhead system (gearhead ratio r = 308). 

Motors are controlled by Maxon Epos 70/10 single-axis 

digital motion controllers, capable of operating in velocity, 

position, homing, and current modes. 

After considering various alternatives, LiFePO4 (lithium 

iron phosphate) batteries, commonly used in modern electric 

vehicles, were selected to power the rover. LiFePO4 

batteries have a high charge density, perform well in high 

temperatures, and are not prone to combustion or explosion. 

Furthermore, they can withstand a high number 

(approximately 500) of charge/discharge cycles before 

needing to be replaced. There are four 12.8V 3.3 Ah 

LiFePO4 batteries on the K11, connected in series. Each 

battery contains 4 cells. 

The philosophy in developing the sensor suite on the K11 

(summarized in Table 1) was to employ only those sensors 

or data acquisition hardware that are commonly available on 

a variety of vehicles or can be added at a reasonable cost, 

while also providing sufficient data for a PDM system. Each 

component is utilized to the maximum extent possible. For 

instance, the motor controllers are not only used for their 

primary purpose of operating the motors and giving 

feedback on their velocity and current consumption, but are 

also used to support external sensors. The unused controller 

analog input channels are called upon to read battery voltage 

and current sensors and will be used for collecting 

temperature readings. In a similar vein, a decision was made 

to utilize a modern off-the-shelf smartphone for part of the 

instrumentation suite instead of, for example, a dedicated 

GPS receiver and a gyroscope.  The smartphone also 

provides a still/video camera, a compass, and data 

processing and storage resources. It has a built-in wireless 

capability for communicating with other on-board 

components and directly with the ground station (as a back-

up to the main communication link through the on-board 

computer). The current phone used on the K11 is a Google 

Nexus S. 

The bulk of the computational resources needed to operate 

the rover are provided by the onboard computer (an Intel 

Core 2 Duo laptop).  Its responsibilities include executing 

the motor control software, performing data acquisition, as 

well as running all of the reasoning algorithms. A second 

laptop computer currently serves as a ground control station. 

2.2. Software 

Several of the core software elements on K11 are adopted, 

or being adopted, from the Service-Oriented Robotic 

Architecture (SORA) developed by the Intelligent Robotics 

Group (Fluckiger, To, & Utz, 2008). This includes the 

navigation software; the middleware, based on Common 

Object Request Broker Architecture (CORBA) (Object 

Management Group, 2004) and Adaptive Communication 

Environment (ACE) (Schmidt, 1994); and the telemetry 

software, the Robot Application Programming Interface 

Delegate (RAPID) (NASA Ames Research Center, 2011). 

The smartphone (running Google Android 2.2 operating 

system) hosts a data acquisition module written in Java.  

That module collects data from the phone‟s sensors 

(described in the previous section) and sends it over a User 

Datagram Protocol (UDP) socket to the onboard computer.  

The central data acquisition software running on the 

computer receives the phone data, merges it with data 

received from other sources (e.g., voltage sensors, current 

Measurement 

Type Manufacturer Location/comments 

GPS (longitude 

and latitude) 

Motorola On the smartphone 

Gyroscope (roll, 

pitch, yaw) 

Motorola On the smartphone 

Motor temperature Omega On each motor (to be 

implemented) 

Battery 

temperature  

Omega On each battery pack 

(to be implemented) 

Position encoder Maxon On each drive motor 

Battery voltage custom On a custom PCB 

board measuring 

individual battery 

pack voltages 

Total current custom On a custom PCB 

board measuring 

individual battery 

pack voltages 

Individual motor 

current 

Maxon Part of motor 

controller 

Table 1: Measurements available on the K11 

 

Figure 1: The K11 rover 
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sensors, controller state, etc) and records it into a unified 

data file, which can then be transmitted to the ground 

control station. The central data acquisition software on the 

K11 is based on LabView from National Instruments.   

The ground station graphical user interface (GUI) software 

is also written in LabView. It allows the operator to take 

manual control of the rover (via on-screen commands or a 

joystick) and to set data recording preferences.  The 

operator can switch the GUI from interacting with the K11 

hardware to interacting with the K11 simulator. One of the 

goals in developing the simulator (described further in 

Section 3) is to make the difference in interacting with it 

versus the rover hardware as minimal as possible. The 

operating system currently used on both the onboard 

computer and the ground station is Microsoft Windows XP.  

It will be replaced by a UNIX-based operating system in the 

near future. 

2.3. Fault Modes 

A number of fault modes have been identified so far for 

implementation on the testbed (Table 2).  The criteria for 

their selection include relevance to a variety of aerospace 

vehicles (not just rovers), feasibility of implementation, and 

progression time from fault to failure.  The last criterion is 

important because if the progression time is too brief (e.g. 

microseconds), then likely no useful action can be taken in 

the prognostic context to predict the remaining useful life of 

the component and remedy the situation. On the other hand, 

if the fault-to-failure progression time is measured in years, 

then running experiments on those fault modes may become 

impractical. Faults in both of the above categories could still 

be handled by diagnostic systems, however. Out of the fault 

modes described in Table 2, a few were selected for the 

initial phase of the project. The methods for their injection 

on the K11 are covered in more detail next. The methods for 

modeling progression of these faults in the simulator are 

described in Section 3. 

2.3.1. Mechanical Jam and Motor Windings 

Deterioration 

The first fault mode selected for implementation is a 

mechanical jam on the motor axle which leads to increased 

current, overheating of motor windings, deterioration of 

their insulation, and eventual failure of the motor due to a 

short in the motor windings. To maintain realism, a 

performance region for the motor is chosen (using 

manufacturer‟s specifications) where a healthy motor would 

have no problems keeping up with either speed or load 

requirements. In the presence of increased friction, however, 

the amount of current needed to satisfy the same speed and 

load demands is higher, leading to overheating. Unless 

speed and/or load are reduced or duty cycle (the proportion 

of time the motor is on versus duration of cool-down 

intervals) is adjusted, the heat build-up will eventually 

destroy the insulation of the motor windings and lead to 

motor failure. This fault mode was first implemented in the 

simulator and its model verified using experimental data 

collected on smaller-sized motors that were run to failure 

under similar conditions (please see section 3.2, Motor 

Modeling). A hardware fault injection using a mechanical 

brake on one of the rover motors will be implemented next. 

The rover motor will not be run to complete failure initially; 

instead the simulator model parameters and prognostic 

algorithms will be validated in experiments stopping short 

of creating permanent damage. Eventually, experiments that 

will take motors all the way to failure will be performed. 

2.3.2. Parasitic Load 

A parasitic electrical load will be injected on the main 

power distribution line via a remotely controlled rheostat. 

The rheostat can be set for resistance from 0 to 100 Ohms 

and can dissipate up to 600 Watts of power. The rheostat 

will simulate a situation where, for example, an accessory 

motor is continuously engaged due to a failed limit 

microswitch. 

2.3.3. Electronics Faults  

The systems on the K11 provide several opportunities for 

fault injection in electronics subsystems. Power electronics 

in the motor drivers allow fault injection in power-switching 

devices such as Metal–Oxide–Semiconductor Field-Effect 

Transistors (MOSFETs), Insulated Gate Bipolar Transistors 

(IGBTs) and electrolytic capacitors used for voltage 

filtering. These devices have a key role in providing current 

Fault Mode Injection method Subsystem 

battery capacity 

degradation accelerated aging power 

battery charge 

tracking normal operations power 

parasitic electric 

load programmable power distribution 

motor failure software 

electro-

mechanical 

increased motor 

friction mechanical brake 

electro-

mechanical 

bearing spalls machined spalls 

electro-

mechanical 

sensor 

bias/drift/failure software sensors 

motor driver faults 

MOSFET 

replacement in the 

controller with an 

aged component power distribution 

 

Table 2: Potential fault modes 
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to the motors, but are known for relatively high failure rates. 

Fault injection will also be implemented on the power 

switches of the motor winding H-bridges, where current will 

be routed to degraded power transistors during rover 

operation. In addition, some of the symptoms of power 

transistors failing will be replicated programmatically by 

varying the gate voltage. The premise of the fault injection 

in the H-bridge transistor is that it will diminish the 

performance of a motor winding, reducing torque and 

altering motor performance characteristics, making control 

difficult. 

Efforts on accelerated aging of IGBTs and power 

MOSFETs are presented in (Celaya, Saxena, Wysocki, 

Saha, & Goebel, 2010). Accelerated aging methodologies 

for electrolytic capacitors under nominal loading and 

environmental conditions are presented in (Kulkarni, 

Biswas, Koutsoukos, Celaya, & Goebel, 2010); 

methodologies for accelerated aging via electrical overstress 

are presented in (Kulkarni, Biswas, Celaya, & Goebel, 

2011). MOSFETs, IGBTs, and electrolytic capacitors at 

various levels of degradation will be used to inject 

component-level electronic faults, with some of the faults 

expected to have a cascading effect on other electronic 

and/or mechanical subsystems. 

2.3.4. Battery Capacity Degradation 

As the rover batteries go through charge/discharge cycles, 

their capacity to hold charge will diminish. The degradation 

rate will depend on several factors such as imposed loads, 

environmental conditions, and charge procedures. For 

example, Li-Ion chemistry batteries undergo higher rates of 

capacity fade with higher current draw and operational 

temperatures. Even at rest, this type of battery has chemical 

processes occurring that have long-term effects - for 

instance, latent self-discharge and transient recovery during 

relaxation. The depth-of-discharge (DoD) and even the 

storage temperature have major influences on the overall 

life of the battery as well. There is no specific mechanism 

required for injecting this fault – the batteries will age 

naturally in the course of rover operations. Some 

experiments will, however, utilize battery cells aged to a 

desired point in their life cycle on the battery aging test 

stand (Saha & Goebel, 2009) 

2.3.5. Remaining Battery Charge Tracking 

While not being, in the strict sense, a fault, tracking the 

remaining battery charge will be one of the main tasks of the 

prognostic system. End of charge is an end-of-life criterion, 

so the remaining charge estimate is expected to be a factor 

in most of actions undertaken by PDM software. Most 

battery-powered devices have some form of battery state-of-

charge (SOC) monitoring onboard. This is mostly based on 

Coulomb counting, i.e. integrating the current drawn over 

time, divided by the rated capacity of the battery. The 

definition used in this work is the following: 

       
       

           

   

                         
      

It should be noted that both the numerator and denominator 

of the fraction are predictions, not the actual measurements: 

battery voltage prediction for the former and capacity 

prediction for the latter. Further details are discussed in 

(Saha and Goebel 2009). 

3. TESTBED SIMULATOR 

As mentioned previously, a simulator has been developed to 

aid in the design of PDM algorithms for the testbed. It 

captures both nominal and faulty behavior, with the 

controlled ability to inject faults. In this way, it serves as a 

virtual testbed through which algorithms can be initially 

tested and validated.  Faults in the simulator are modeled as 

undesired changes in system parameters or configuration. In 

addition to serving as a virtual testbed, the simulator will 

also be utilized in guiding the decision making process. A 

graphical user interface was developed for interacting with 

the simulator, and is shown in Figure 2. In this section, the 

models used by the simulator are reviewed and some model 

validation results are presented. 

3.1. Rover Dynamics Modeling 

The rover consists of a symmetric rigid frame with four 

independently-driven wheels. Generalized rover coordinates 

are shown in Figure 3. The F subscript stands for “front”, 

the B subscript for “back”, the L subscript for “left”, and the 

R subscript for “right”. The rover pose is given by        . 

The independent dynamic variables describing the motion 

include the body longitudinal velocity  , the body rotational 

velocity  , and the wheel rotational velocities    ,    , 

   , and    . Note that the body velocities and wheel 

velocities are independent due to the presence of slip. 

Velocity in the lateral direction is negligible (Mandow, 

2007). 
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Since the rover exhibits both longitudinal and rotational 

velocity, it will experience forces opposing both of these 

movements. The rover forces are shown in Figure 4. Each 

motor produces a torque that drives its wheel. When the 

longitudinal velocity of the rover is equal to the rotational 

velocity of the wheel times its radius, then there is no slip 

and no force. Otherwise, some amount of slip will be 

present and the difference in the relative velocities of the 

wheel and the ground produce a ground force     that 

pushes the wheel along the ground. These forces are 

transmitted to the rover body, moving it in the longitudinal 

direction. The    forces produce torques on the rover body, 

producing a rotation. The rotation is opposed by additional 

friction forces    . The friction forces are defined as: 

               

         

Note that    and    are not in the same units. The     

forces, opposing the rotation, act at a right angle from the 

diagonal going from the robot center to the wheel, and in the 

direction that opposes the rotation. The forward component 

of this force affects the forward velocity of the rover, just as 

the component of a     force perpendicular to the diagonal 

affects the rotational velocity. The angle   is of interest 

here, given by 

               

 

Figure 2: Rover simulation GUI 

 

y

x

l

b(xFL,yFL)

(xFR,yFR)

(xBL,yBL)

(xBR,yBR)

θ

 

Figure 3: Generalized rover coordinates 
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For a given wheel  , the rotational velocity is described by 

    
 

  
                            , 

where    is the wheel inertia,     is the motor torque, and 

    is the friction torque: 

         . 

The forward velocity is described by 

   
 

 
                           , 

assuming that   are the same for all wheels so that the 

contributions from the     forces cancel out. The rotational 

velocity is described by 

   
 

 
                                         

                    

We note that the     forces are at distance   from the rover 

center with the perpendicular component at angle  . The 

     factor projects the force onto the tangent of the 

rotation. 

3.2. Motor Modeling 

The wheel motors are DC motors with PID control. The DC 

motor model is given by 

     
 

 
                

where    is the motor voltage,   is the winding inductance, 

  is the winding resistance, and    is an energy 

transformation term. The motor torque given by 

        

where    is an energy transformation term. 

Increased motor/wheel friction for wheel   is captured by 

an increase in   . A change in motor resistance is captured 

by a change in  . The motors windings are designed to 

withstand temperatures up to a certain point, after which, the 

insulation breaks down, the windings short, and the motor 

fails. It is therefore important to model the temperature 

behavior of the motor. 

The motor thermocouple is located on the motor surface. 

The surface loses heat to the environment and is heated 

indirectly by the windings, which, in turn, are heated up by 

the current passing through them. The temperature of the 

windings is given by 

    
 

  
                , 

where    is the thermal inertia of the windings,    is a heat 

transfer coefficient, and    is the motor surface temperature 

(Balaban, et al., 2009). It is assumed that heat is lost only to 

the motor surface, and that winding resistance   is 

approximately constant for the temperature range 

considered. The surface temperature is given by 

    
 

  
                       

where     is the thermal inertia of the motor surface,    is a 

heat transfer coefficient, and    is the ambient temperature. 

Heat is transferred from the windings to the surface and lost 

to the environment. 

This model was validated for DC motors using experimental 

data collected on the Flyable Electro-Mechanical Actuator 

(FLEA) testbed (Balaban, Saxena, Narasimhan, 

Roychoudhury, Goebel, & Koopmans, 2010). The unknown 

parameters              and   were identified to match 

data acquired from a scenario where the motor was 

overloaded and, as a result, heated up considerably. The 

motor current and surface temperatures were measured. A 

comparison of predicted vs. measured temperature is shown 

in Figure 5. 

FglFL FglFR

FglBL FglBR

ω

FgrBL

FgrFR

FgrBR

γ
FgrFL

 

Figure 4: Rover forces 



 

Figure 5: Comparison of measured and model-predicted 

motor surface temperature for a DC motor 

3.3. Sensor Fault Modeling 

Sensor faults are captured with bias, drift, gain, and scaling 

terms. Ranges for typical fault magnitude values have been 

identified through a literature search and discussions with 

manufacturers (Balaban, Saxena, Bansal, Goebel, & Curran, 

2009). Faults in common sensors such as current, voltage, 

temperature, and position will be modeled. 

3.4. Battery Modeling 

The key challenge in modeling a battery is estimating its 

open-circuit voltage,   . The theoretical open-circuit 

voltage of a battery is traditionally assessed when all 

reactants are at      and at 1M concentration (or 1 atm 

pressure). However, this voltage cannot be measured 

directly during battery use due to the influence of internal 

passive components such as the electrolyte, the separator, 

and the terminal leads. The measured voltage will be lower; 

the factors contributing to the voltage drop are characterized 

in the following paragraphs. 

The first factor considered is the ohmic drop. The term 

refers to the diffusion process through which Li-ions 

migrate to the cathode via the electrolytic medium. The 

internal resistance to this ionic diffusion process can also be 

referred to as the IR drop. For a given load current, this drop 

usually decreases with time due to the increase in internal 

temperature, which results in increased ion mobility. 

The next factor is self-discharge, which is caused by the 

residual ionic and electronic flow through a cell even when 

there is no external current being drawn. The resulting drop 

in voltage has been modeled to represent the activation 

polarization of the battery. All chemical reactions have a 

certain activation barrier that must be overcome in order for 

the reaction to proceed and the energy needed to overcome 

this barrier leads to the activation polarization voltage drop. 

The dynamics of this process are described by the Butler–

Volmer equation, which, in this work, is approximated by a 

logarithmic function. 

Concentration polarization is the voltage loss due to spatial 

variations in reactant concentration at the electrodes. This 

occurs primarily when the reactants are consumed faster by 

the electrochemical reaction than they can diffuse into the 

porous electrode. The phenomenon can also occur due to 

variations in bulk flow composition. The consumption of 

Li-ions causes a drop in their concentration along the cell, 

which causes a drop in the local potential near the cathode. 

The magnitude of concentration polarization is usually low 

during the initial part of the discharge cycle, but grows 

rapidly towards the end of it or when the load current 

increases. 

Finally, the degradation of battery capacity with aging, as 

encapsulated by the cycle life parameter, can be modeled by 

the concept of Coulombic efficiency,   , defined as the 

fraction of the prior charge capacity that is available during 

the following discharge cycle (Huggins, 2008). As 

mentioned previously, this depends upon a number of 

factors, particularly on current and depth of discharge in 

each cycle. The temperature at which the batteries are stored 

and operated under also has a significant effect on the 

Coulombic efficiency. For further details on battery 

modeling, please refer to (Saha and Goebel 2009).  

3.5. Electronics Fault Modeling  

The field of electronics prognostics is relatively new 

compared to prognostics for mechanical systems. As a 

result, research efforts to develop physics-based degradation 

models that take into account loading and operational 

conditions are in their early stages. There are several well-

known electronics reliability models that deal with failure 

rates under specific stress factors and corresponding failure 

mechanisms. However, such models do not take into 

account usage time, thus making them less suitable for 

prediction of remaining useful life.  

Empirical degradation models of IGBTs, based on the turn-

off tail of the drain current, have recently been used for 

prediction of their future health state (Saha B., Celaya, 

Wysocki, & Goebel, 2009). Their collector-emitter voltage 

has been used as precursor of failure as well (Patil, 2009). 

In the case of power MOSFETs, the on-state drain to source 

resistance has been identified as a precursor to failure for 

the die-attach failure mechanism (Celaya, Saxena, Wysocki, 

Saha, & Goebel, 2010). For gate-related failure, empirical 

degradation models based on the exponential function have 

also been developed (Saha S., Celaya, Vashchenko, 

Mahiuddin, & Goebel, 2011). 
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For electrolytic capacitors, an empirical degradation model, 

also based on an exponential function is presented in 

(Celaya, Saxena, Vaschenko, Saha, & Goebel, 2011). This 

model is built based on accelerated degradation data. Details 

on its physical foundations are presented in (Kulkarni, 

Biswas, Celaya, & Goebel, 2011). 

4. PROGNOSTICS-ENABLED DECISION MAKING 

ALGORITHM DEVELOPMENT 

This section describes the reasoning architecture currently 

being deployed on the K11 and is meant to mainly provide 

an overview of the types of algorithms that can be plugged 

into it for testing and comparison. The current set of 

algorithms is expected to evolve as this research progresses 

and other organizations become involved. Figure 6 outlines 

the architecture and depicts the information flow among its 

components. The Prognostic Health Management (PHM) 

element on the figure combines diagnostic and prognostic 

reasoning engines. If a system fault occurs, the diagnostic 

engine is tasked with detecting it and identifying what it is, 

followed by invocation of an appropriate prognostic 

algorithm to track fault progression. Once a prognosis of the 

remaining useful life is made, the information is passed to 

the decision optimization module, which identifies the best 

way to respond. The K11 simulator, with its nominal and 

fault-progression models, is used to guide the decision 

optimization process in some of the cases. The response 

chosen may involve reconfiguration of low-level controllers 

or requesting the planner to come up with a new mission 

plan. Planner output is used to generate action schedules and 

then, through the executive module, time-ordered 

commands for individual components. 

4.1. Diagnostics 

Diagnosis can be defined as the process of detecting, 

isolating, and identifying faults in the system. A fault is 

defined as an undesired change in the system that causes the 

system to deviate from its nominal operation regime. 

Diagnostic approaches can be broadly divided into two 

types: model-based and data-driven (Gertler, 1998). Model-

based methods rely on a system model built from a priori 

knowledge about the system. Data-driven methods, on the 

other hand, do not require such models but instead require 

large, diverse sets of exemplar failure data, which are often 

not available. The decision of whether to adopt a model-

based or a data-driven diagnostic approach depends on the 

sensor suite properties and the fault modes of interest, 

among other factors. 

Currently a model-based approach is adopted for providing 

a diagnostic system for the rover, as the sensors (Table 1) 

and fault modes (Table 2) lend themselves to physics-based 

modeling. Once sensors measuring more complex dynamics 

(e.g. accelerometers) are added to the system, data-driven 

diagnosis methods may be required.  Additionally, model-

based and data-driven algorithms can be synergistically 

combined to improve upon either approach implemented 

individually (Narasimhan, Roychoudhury, Balaban, & 

Saxena, 2010). 

 

 

Figure 6: Autonomy architecture 
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Typically, model-based methods require a nominal system 

model, as well as a model that captures the relations 

between faults and symptoms. The overall goal is to use the  

model to generate estimates of nominal system behavior, 

then compare them with observed system behavior. If any 

deviation from nominal, i.e., a symptom, is observed, the 

fault-symptom model is used to isolate the fault modes that 

explain the symptoms.  

A model-based diagnosis approach is generally split into 

three tasks: fault detection, fault isolation, and fault 

identification, with the following event flow: 

 Fault detection involves determining if the system 

behavior has deviated from nominal due to the 

occurrence of one or more faults. The fault detector 

takes as inputs the measurement readings,  , and 

the expected nominal measurement values,   , 

generated by the nominal system observer. The 

detector indicates a fault if the residual,       , 

is statistically significant.  

 Once a fault is detected, the fault isolation module 

generates a set of fault hypotheses,  , and, at every 

time step, reasons about what faults are consistent 

with the sequence of observed measurements in 

order to reduce  . The goal of fault isolation is to 

reduce   to as small a set as possible. If only single 

faults are assumed then, ideally, the goal of fault 

isolation is to reduce   to a singleton set. 

 Once the fault (or faults) are isolated, fault 

identification is invoked. It involves quantitatively 

evaluating the magnitude of each fault,    .  

Once the fault magnitude is identified, prognostic 

algorithms can be invoked to predict how the damage grows 

over time and estimate the remaining useful life of the 

affected component and the overall system. 

4.2. Prognostics 

For the purposes of this research, prognostics is defined as 

the process which predicts the time when a system variable 

or vector indicating system health no longer falls within the 

limits set forth by the system specifications (End-of-Life or 

EOL). The prediction is based on proposed future usage. In 

some cases the trajectory of the aforementioned variable or 

vector through time is predicted as well. Similarly to 

diagnostic methods, prognostics methods are generally 

classified as either data-driven or model-based: 

(Schwabacher, 2005); (Saha and Goebel 2009); (Daigle & 

Goebel, 2011). 

Generally, the inputs to a prognostic algorithm include 

information on the fault provided by the diagnostic 

algorithm (e.g. fault type, time and magnitude).  Output of a 

prognostic algorithm could be then presented to a PDM 

algorithm in one of the following ways:  

a. as an estimate   
        

 of the variable of interest 

(e.g. accumulated damage or remaining life) at a  

specific time    given the information up to time    

for a component  , where       . L is the 

anticipated average load up to tj.  

b. As a discrete point trajectory     
 

    given 

information up to the point i, where L={l1, l2, …, lEoP} 

are the anticipated load values for each point on the 

 
Figure 7. Prognostic prediction example 
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prediction trajectory, EOP is the end of prediction 

index, and I < j < EOP. 

c. As a continuous function       
 

    given 

information up to a time    and an anticipated load 

function L(t) 

The estimate produced in all of the above cases may be 

expressed as a probability density function (pdf) or as 

moments derived from the probability distribution. Each of 

the three options assumes time-variability of the prognostic 

function, which is one of the main factors that make PDM 

an interesting and challenging research problem.  The 

function may change from one time of prediction to the next 

as more information about the behavior of the system 

becomes available. 

Figure 7 shows the important features of an example 

prediction curve produced at a specific time t. The points on 

the time axis are relative to the moment of prediction. The 

health index values are normalized to be in the [0, 1] 

interval. Probability density of health index values for each 

point in time is illustrated using a grayscale map (shown on 

the right side of the figure). The solid black bars are drawn 

to show one standard deviation of probability distributions 

at different time points into the future. End-of-Life is a time 

value corresponding to the health index chosen to indicate 

that the component or a system can no longer provide useful 

performance. In this example EOL corresponds to health 

index of 0, however the threshold can be defined as any 

other value in the [0, 1] interval. 

The prediction step requires knowledge of the future usage 

of the system. For the rover, this involves the expected 

future trajectory and environmental inputs, such as the 

terrain and the ambient temperature. The physics models 

developed for the simulator can be utilized in both the 

estimation and prediction phases. Damage progression 

processes that are difficult to model may require use of data-

driven prognostics methods. In the remainder of this section, 

more details are provided on the prognostic methods 

currently investigated for the fault modes of interest. 

4.2.1. Mechanical Jam/Windings Insulation 

Deterioration 

The thermal build-up model as described in the simulator 

section will be used to predict when the interior of a motor 

would reach the temperature at which insulation of the 

windings is likely to melt, thus disabling the motor. A 

machine-learning prediction method will also be utilized for 

comparison. The method is based on the Gaussian Process 

Regression (GPR) principles and was previously tested on 

another testbed developed at NASA Ames, the FLEA 

(Balaban, Saxena, Narasimhan, Roychoudhury, & Goebel, 

Experimental Validation of a Prognostic Health 

Management System for Electro-Mechanical Actuators, 

2011). The FLEA was used to inject and collect data 

progression of the same type of fault in the motors of 

electro-mechanical actuators.  Several motors were run to 

complete failure and GPR demonstrated a high accuracy in 

predicting their remaining useful life.  

GPR does not need explicit fault growth models and can be 

made computationally less expensive by sampling 

techniques. Further, it provides variance bounds around the 

predicted trajectory to represent the associated confidence 

(Rasmussen & Williams, 2006). Domain knowledge 

available from the process is encoded by the covariance 

function that defines the relationship between data points in 

a time series. In the present implementation, a Neural 

Network type covariance function is used. 

Sensor data is processed in real-time to extract relevant 

features, which are used by the GPR algorithm for training 

during the initial period. The longer is the training period, 

the better are the chances for the algorithm to learn the true 

fault growth characteristics. However, to strike a balance 

between the length of the training period and the risk of 

producing an insufficient prediction horizon, a limit for the 

training period is set. Once this limit is reached, the 

algorithm starts predicting fault growth trajectories. EOL is 

subsequently determined by where these trajectories 

intersect the predetermined fault level threshold. As time 

progresses, the GPR model is updated with new 

observations and, subsequently, the predictions are updated 

as well. Best fitting hyper-parameters for the covariance 

function are determined via a maximum-likelihood 

optimization. The uncertainty created by this process is 

handled by drawing a large (p~50) number of samples from 

the observed data at each prediction instance (tp) and 

training p different Gaussian Process models on these 

distinct data sets. Their prediction results are then averaged. 

4.2.2. Battery Capacity Deterioration and Charge 

Tracking 

There are several methods widely in use for batteries that 

relate capacity and SOC to the number of cycles a battery 

has undergone and its open circuit voltage. Most such 

methods, however, are reliability based, i.e. they assume 

certain usage profiles are maintained throughout the cycle 

life of the battery. Such assumptions (for instance that the 

battery undergoes full discharge followed by full charge 

repeatedly until its end-of-life) are not always realistic. This 

is especially true for a platform such as the K11, where 

individual missions may have different goals with different 

load profiles. Under such circumstances, it is advantageous 

to model the internal processes of the battery and let a 

Bayesian inference framework, such as the Particle Filter 

(Arulampalam, Maskell, Gordon, & Clapp, 2002) manage 

the uncertainty in the model (Saha & Goebel, 2009) 
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In the remaining battery charge prediction application, the 

main state variable is the battery voltage, E, and in the 

objective is to predict when E reaches the low-voltage 

cutoff. During the prognostic process a tracking routine is 

run until a long-term prediction is required, at which point 

the state model is used to propagate the last updated 

particles until the end-of-discharge (EOD) voltage cutoff is 

reached. The RUL pdf is computed from the weighted RUL 

predictions of the particles in the last tracking step. Figure 8 

shows the flow diagram of the prediction process. 

In the case of the overall battery life cycle, the main variable 

that needs to be tracked is the capacity of the battery itself, 

and the goal is to predict when the battery capacity will fade 

by more than 20% from when it was new. At that point the 

battery is said to have reached its EOL. For a description of 

the main physical phenomena behind these processes, please 

refer to Section 3.2. A battery lifecycle model and a Particle 

Filter algorithm utilizing it are presented in (Saha & Goebel, 

2009) and (Saha, et al., 2011). 

4.2.3. Electronics Faults 

Previously researched data-driven and model-based (direct 

physics and empirical/Bayesian) techniques are being 

utilized for addressing electronics faults. The particle filter 

approach has been used in conjunction with an empirical 

degradation model for IGBTs experiencing failures related 

to thermal overstress (Saha B. , Celaya, Wysocki, & Goebel, 

2009). For power MOSFETs, a data-driven prognostics 

approach based on Gaussian Process Regression has 

recently been implemented for die-attach degradation 

(Celaya, Saxena, Vaschenko, Saha, & Goebel, 2011). For 

electrolytic capacitors, a remaining useful life prediction 

based on  a Kalman filter has been developed using a 

degradation model based on an empirical exponential 

function (Celaya, Kulkarni, Biswas, & Goebel, 2011). It 

should be noted that the aforementioned efforts make the 

assumption of usage levels and operational conditions 

staying constant in the future. New accelerated aging 

experiments aimed at producing degradation models without 

these limitations are currently underway. 

4.3. Decision Making 

As stated previously, one of the main objectives of the K11 

testbed is to investigate PDM algorithms in order to enhance 

an aerospace vehicle‟s capability to achieve its high-level 

goals – be it under a faulty condition, degraded operation of 

a subsystem, or an anticipated catastrophic failure. There 

has been an increasing amount of research conducted over 

the last several years in prognostic methodologies for 

various types of components or systems. The effort 

described in this paper aims to bring more attention to the 

“management” aspect of prognostic health management, i.e. 

what could be done after a fault is detected and the 

trajectory of its progression is predicted. 

Several factors are being used to select the appropriate 

system level (or levels) on which to respond to an off-

nominal condition. These factors include the severity of a 

fault, its criticality, and predicted time-to-failure interval. A 

faulty electronic component in an electric motor driver 

could prompt the decision-making system to trigger a 

controller reconfiguration - so as to ensure the dynamic 

stability of the system and a certain level of retained 

performance. At a different level, a control effort 

reallocation can be triggered by a supervisory mid-level 

controller in order reduce the torque required from a faulty 

drive motor and compensate for the reduction with the other 

motors. Reallocating the load could, potentially, extend the 

remaining useful life of the affected component long enough 

to ensure achievement of the mission objectives. At the 

highest level, the rover mission can be re-planned based on 

prognostic health information so as to achieve maximum 

possible utility and safety. The above examples call on 

different system components in their response; there are, 

however, commonalities for all of them. There is always an 

objective (or a set of objectives) to be met and a series of 

actions to be selected by the decision making process in 

order the meet those objectives. Therefore, the decision 

making process is, essentially, an optimization process 

which tries to achieve specified objectives by considering 

system performance and health constraints. 

 

Figure 8: Prediction flowchart 
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The scope for the decision-making module in the current 

implementation is defined as the following: getting vehicle 

health information from the prognostic health reasoner and 

the simulator, the decision-making module evaluates the 

best course of action to take (e.g., controller reconfiguration 

or mission replanning), while stopping short of performing 

the actual reconfiguration or re-planning.  Instead, the 

decision-making module adjusts goals and constraints for 

other software components.  To use the planner as an 

example, the module could set a constraint on rover speed or 

on the total mission duration, then request the planner to 

come up with a detailed new plan. In the future, however, it 

may be necessary to consider whether making PDM-specific 

modifications to the planner or the adaptive controller, for 

instance, would improve performance. 

The rover is assumed to be an autonomous planetary 

vehicle, operating with only high level control from human 

operators (initial sets of goals and constraints). The 

following definitions and assumptions are used in the 

current phase of the work: 

 The initial sets of goals G={g1, g2, …, gN}  and 

constraint variables K={k1, k2, …, kM}  are provided 

as inputs. 

 The initial constraint ranges are:       , 

    
    

 ],       
    

 ], The constraint ranges are 

adjusted given information from the diagnostic, 

prognostic, and decision optimization routines. 

 Some elements of G may be eliminated as a result 

of the optimization process. The size of K (M) will 

remain constant. 

 Goal rewards:      ,            ]. rmax is the 

maximum possible value of goal reward. 

 Goal locations:                              , 

    . The preceding location definition is 
general for a three-dimensional space. In the 
case of a rover it simplifies to              . 

 Constraint ranges:      ,      
    

       

   
    

 ] 

 Transition cost:                               , 

                                                  

cost for the system. The former is calculated based 

on the distance between the goal locations, 

proposed velocity, and the load index (terrain 

difficulty). The later is estimated using the health 

prognostic function, which takes the distance, 

velocity, and the load index as its inputs. 

 Mission starts with energy amount E0 available 

 E(t) and H(t) are the energy and system health 

„amounts‟ at time t, respectively. E(t)=0 or H(t)=0 

constitutes an end-of-life (EOL) condition 

 The objective is to accumulate the maximum 

possible reward before energy and health budgets 

are exceeded 

 

 
 

Figure 9. Decision optimization solution space 
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Two PDM approaches are currently implemented and 

verified in a simulation involving a small number of goals: 

Dynamic Programming (DP) and a variant of Probability 

Collectives (PC) (Wolpert, 2006). A (more computationally 

expensive) exhaustive search method is used for verification 

of the DP and PC algorithms. A simple five-goal example is 

presented next for illustration purposes. 

Each of the nodes (goals) is associated with a reward value 

in the parenthesis ( 

Figure 9). The vehicle starts out at goal 1, but can choose to 

traverse the rest of the goal in any order. For some of the 

degradation modes system health cost may correlate to the 

energy cost (which, in turn, could be proportional to the sum 

of loads on the system, whether they are mechanical or 

electrical). Motor windings insulation deterioration due to 

increased friction in the system could be one such example. 

One the other hand, deterioration of an electronic 

component in one of the subsystems may be determined 

primarily by the amount of current flowing through that 

component, ambient temperature, and time. 

The implemented DP algorithm uses forward propagation, 

evaluating the best solution for transitioning from stage to 

stage, while assuming optimality of the previously made 

decisions. An „efficiency index‟ is used for guiding the 

stage-to-stage decision process: 

               

If either health or energy values become less or equal to 

zero (or all the nodes are visited), the forward propagation 

phase is stopped. After the forward traverse is completed, an 

optimal path popt is „backed-out‟ by traversing the stages in 

the opposite (right-to-left) direction, starting with the node 

associated with the highest accumulated reward. 

The algorithm based on Probabilities Collectives principles 

is structured in the following manner: 

• P is defined as the enumerated set of all possible paths 

p  

• An initial probability distribution f(p) for P is assigned 

• „Related‟ paths are defined as those that share   
      initial nodes, with n incremented progressively 

every m iterations of the algorithm 

• P is sampled using f(p), obtaining a sample path pi  The 

cumulative path reward is evaluated by „walking‟ the 

sampled path and taking into account energy and health 

budgets. If the reward is equal or greater than the 

current maximum, the probability of the sampled path 

and paths that are „related‟ to it are increased and P is 

re-normalized. 

Uncertainty in transition costs and node rewards is 

incorporated by associating them with probability 

distributions as well. These distributions are then sampled 

when „walking‟ a path during its evaluation. 

Experimenting with DP- and PC-based algorithms showed 

that both would work well on relatively uncomplicated 

problems, such as the one described in this section. 

Limitations of the two approaches started to become evident 

as well, however. A DP implementation will become more 

challenging if will multi-objective problems are posed (i.e. 

optimization over component(s) RUL in addition to 

cumulative mission reward is desired), unless the multiple 

optimization variables lend themselves to being aggregated 

into a single „composite‟ variable. The PC-based method, on 

the other hand, will likely have a lower limit on the size of 

the goal set it can practically process, at least in its current 

form.  Nevertheless, PC appears to be well-suited for the 

problem of optimizing system parameters and constraints 

for maximum RUL, which is being pursued next. 

4.4. Task Planning and Execution 

Once the high level goals and constraints are determined by 

the prognostics-enabled decision making module, the 

detailed task planning for the rover will be generated using 

NASA‟s Extensible Universal Remote Operations 

Architecture (EUROPA) (Frank & Jonsson, 2003). 

EUROPA provides the capability of solving task planning, 

scheduling, and constraint-programming problems.. In a 

complex system, such as a rover, scheduling specific tasks 

to be executed is often a non-trivial problem. There are 

resources that are shared by different processes that may not 

necessarily be available at all times, so EUROPA supports 

generation of a schedule of activities. Plans and schedules 

generated by EUROPA (either nominal or those generated 

in response to a fault) will be passed for automated 

execution via Plan Execution Interchange Language 

(PLEXIL) (Dalal, et al., 2007). 

5. CONCLUSIONS 

The work described in this paper is aimed at providing an 

inexpensive, safe platform for development, validation, 

evaluation, and comparison of prognostics-enabled decision 

making algorithms.  Technologies resulting from this 

research are planned to be transferred for further maturation 

on unmanned aerial vehicles and other complex systems. At 

present, the K11 testbed already constitutes a promising 

platform for PDM research. A list of fault modes of interest 

has been identified and a number of them have already been 

implemented in software and/or hardware.  A software 

simulator has been developed that incorporates models of 

both nominal and off-nominal behavior, with some of the 

models verified using experimental data. The software 

architecture for the testbed has been defined in such a way 

as to allow quick replacement of autonomy elements 
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depending on testing objectives and customers. The first set 

of reasoning algorithms, developed at NASA Ames, is being 

deployed. 

Plans for the near future include addition of further 

injectable fault modes, field experiments of greater 

complexity, simulator model refinement, and extension of 

PDM methods to handle more complex problems, including 

constraints adjustment for optimal RUL .  Data collected on 

the testbed is planned for distribution to other researchers in 

the field. 
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NOMENCLATURE 

ARMD Aeronautics Research Mission Directorate 

CORBA Common Object Request Broker Architecture 

DDS Data Distribution Service 

DM Decision Making 

EOD End Of Discharge 

EOL End Of (Useful) Life 

EUROPA Extensible Universal Remote Operations 

Architecture 

GPR Gaussian Progress Regression 

GPS Global Positioning System 

IGBT Insulated Gate Bi-polar Transistor 

LiFePO4 Lithium Iron Phosphate 

MOSFET Metal Oxide Semiconductor Field Effect 

Transistor 

PDM Prognostics-enabled Decision Making 

PHM Prognostics and Health Management 

PLEXIL Plan Execution Interchange Language 

RUL Remaining Useful Life 

SOC State Of Charge 
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