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1 NASA Ames Research Center, Moffett Field, CA, 94035, USA
edward.balaban, matthew.j.daigle, adam.sweet@nasa.gov

2 University of California, Santa Cruz, NASA Ames Research Center, Moffett Field, CA, 94035, USA
sriram.narasimhan@nasa.gov

3 SGT Inc., NASA Ames Research Center, Moffett Field, CA, 94035, USA
indranil.roychoudhury@nasa.gov, jose.r.celaya@nasa.gov

4 NASA Kennedy Space Center, FL, 32899, USA
christopher.n.bond@nasa.gov

5 USRA, NASA Ames Research Center, Moffett Field, CA, 94035
george.e.gorospe@nasa.gov

ABSTRACT

As fault diagnosis and prognosis systems in aerospace appli-
cations become more capable, the ability to utilize informa-
tion supplied by them becomes increasingly important. While
certain types of vehicle health data can be effectively pro-
cessed and acted upon by crew or support personnel, others,
due to their complexity or time constraints, require either au-
tomated or semi-automated reasoning. Prognostics-enabled
Decision Making (PDM) is an emerging research area that
aims to integrate prognostic health information and knowl-
edge about the future operating conditions into the process of
selecting subsequent actions for the system. The newly devel-
oped PDM algorithms require suitable software and hardware
platforms for testing under realistic fault scenarios. The pa-
per describes the development of such a platform, based on
the K11 planetary rover prototype. A variety of injectable
fault modes are being investigated for electrical, mechanical,
and power subsystems of the testbed, along with methods for
data collection and processing. In addition to the hardware
platform, a software simulator with matching capabilities has
been developed. The simulator allows for prototyping and
initial validation of the algorithms prior to their deployment
on the K11. The simulator is also available to the PDM al-
gorithms to assist with the reasoning process. A reference set
of diagnostic, prognostic, and decision making algorithms is
also described, followed by an overview of the current test
scenarios and the results of their execution on the simulator.

Edward Balaban et.al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

New designs of aerospace vehicles have been gradually gain-
ing system health diagnostic and, in some cases, even prog-
nostic capabilities (Reveley, Kurtoglu, Leone, Briggs, &
Withrow, 2010), with the next logical step in autonomy mat-
uration being decision-making based on such health informa-
tion. A vehicle capable of evaluating its own health state and
making (or assisting with making) decisions extending its re-
maining useful life or improving safety margins, may be able
to go further and accomplish more objectives than a vehicle
fully dependent on human actions. In addition to helping with
mission execution, prognostics-enabled decision making sys-
tems may also prove valuable for vehicle maintenance, supply
chain logistics, and fleet management.

While the research and development efforts for PDM systems
are, for the most part, in their early stages, a need already
exists for suitable platforms and techniqiues for their test-
ing. At NASA Ames Research Center, test platforms from
prior research efforts, such as (Poll et al., 2007) for electrical
power systems or (Smith et al., 2009; Balaban et al., 2010)
for electro-mechanical actuators, were created primarily with
the diagnostic and prognostic elements of system health man-
agement in mind. In order to support our work in PDM a new
platform was therefore needed. Such a platform is expected
to support the following five high-level tasks: (i) develop-
ment of system- and component-level PDM algorithms; (ii)
development of realistic fault injection and accelerated aging
techniques for algorithm testing; (iii) maturation and stan-
dardization of interfaces between reasoning algorithms; (iv)
performance comparison of PDM algorithms from different

International Journal of Prognostics and Health Management, ISSN2153-2648, 2013 006
1



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

sources; and (v) generation of publicly available datasets for
enabling further PDM research.

While an aerial test vehicle, such as an unmanned fixed-
wing airplane or a helicopter, would allow testing of PDM
technologies on complex scenarios and with motion in three-
dimensional space, operating it is often expensive. A single
flight hour often requires many days of preparation. Safety
requirements for an aerial vehicle, whether manned or un-
manned, are also usually quite stringent. In contrast, a ground
vehicle can operate at low speeds in a controlled environment,
making experiments easier, faster, and safer to set up. The ex-
periments can still involve motion, complex subsystems inter-
actions, and elaborate mission plans, however the possibility
of a dangerous situation occurring is reduced significantly.
For technologies in their early phases of development in par-
ticular, a ground vehicle platform could provide a suitable test
environment for the majority of development goals at a frac-
tion of the cost of an aerial vehicle (and usually with a clear
transition path to the latter).

This paper updates and expands our previous description of
the effort to develop such a platform and the associated PDM
validation techniques (Balaban, Narasimhan, et al., 2011).
The new features of the K11 testbed (a planetary rover pro-
totype) include a redesigned sensor suite and a more capable
battery management system. The K11 software simulator has
also been updated with more accurate physics models. A new
software architecture has been deployed on the testbed, sup-
porting rapid integration of reasoning algorithms. The paper
also provides an updated description of the reasoning algo-
rithms currently under development and presents the formu-
lation and results from the latest set of validation scenarios.

This paper is organized as follows. Section 2, describes re-
lated efforts. Section 3 presents the hardware and system
software of the K11, while Section 4 describes the simulator
and the experimental validation of the physics models. Sec-
tion 7 presents the reasoning algorithms (diagnostic, prog-
nostic, and decision making) currently being developed on
the K11. The fault management experiments executed on
the K11 simulator and their results are the subject of Section
8. Finally, Section 9 provides a summary of the accomplish-
ments and outlines directions for future work.

2. RELATED WORK

Brown, Georgoulas, and Bole (2009) report on a prognostics-
enhanced fault-tolerant controller that trades off performance
for remaining useful life. The controller is based on model-
predictive control principles, with control boundaries for a
given remaining useful life estimate (corresponding to a par-
ticular input) used as soft cost constraints. The work is
extended with error analysis and estimation of uncertainty
bounds for long-term Remaining Useful Life (RUL) predic-
tions in (Brown & Vachtsevanos, 2011). In (Bole, Tang,

Goebel, & Vachtsevanos, 2011) the authors also study the op-
timal load allocation problem given prognostic data on fault
magnitude growth. Value at Risk, coming from the field of
finance, is used as the key performance metric. The case
study used for the experiments is an unmanned ground ve-
hicle (UGV), where winding insulation on the drive motors is
degrading due to thermal stress.

The work done by Tang, Edwards, Orchard, and others on
Automated Contingency Management (ACM) includes ele-
ments of prognostics-enhanced control, but also extends to
mission replanning based on prognostic information (Tang et
al., 2007; Edwards, Orchard, Tang, Goebel, & Vachtsevanos,
2010; Tang, Hettler, Zhang, & Decastro, 2011). Diagnostic
and prognostic algorithms for various types of components
are developed and integrated into a prototype UGV decision-
making framework. RUL estimates are used either as a con-
straint or an additional element in the cost function in the
UGV path planning algorithm. A Field D*-style search al-
gorithm is used for receding horizon planning. Methods for
estimating and managing uncertainty are also developed.

3. TESTBED

The K11 (shown in Figure 1) is a four-wheeled rover, origi-
nally designed as a platform for testing power-efficient rover
designs in Antarctic conditions (Lachat, Krebs, Thueer, &
Siegwart, 2006). Since being repurposed for PDM research,
the rover has been substantially updated, with its power distri-
bution system, sensor suite, data acquisition module, and sys-
tem software redesigned from the ground up. The following
subsections provide more details on the K11 hardware, soft-
ware, and fault injection methods (both those methods that
have already been implemented and those that are planned to
be added in the near future).

3.1. Hardware

The rover is roughly 1.4 m long by 1.1 m wide by 0.63 m tall.
Its chassis is a lightweight H-structure with a joint around the
front roll axis to ensure that the wheels stay in contact with
the ground on uneven terrain. Each wheel is driven by an
independent 250 W graphite-brush motor, connected through
a bearing and gearhead system, with control performed by a
single-axis digital motion controller. The rover is powered by
twenty four 2.2 Ah lithium-ion single cell batteries (18650
form factor), organized in two parallel strings of twelve bat-
teries in series. An onboard laptop computer runs the con-
trol and data acquisition software, as well as the reasoning
algorithms. A second laptop computer currently serves as a
ground control station.

The battery management system (BMS) provides battery
charging and load balancing capabilities. The BMS also
sends voltage and temperature measurements for each of the
individual cells to the onboard computer via a Controller Area
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Network (CAN) bus interface. The data acquisition (DAQ)
module collects current and motor temperature measurements
and sends them to the onboard computer. The motor con-
trollers send back motion data such as encoder position val-
ues, commanded speed, and actual speed. Finally, a Google
Nexus S smartphone is utilized as an additional sensor suite.
It contains a GPS receiver, a gyroscope, an accelerometer, a
photo and video camera, a magnetic compass, as well as data
processing and storage resources. The phone also has a built-
in wireless capability for communicating with other on-board
components (and directly with the ground station). Table 1
presents the measurements available on the K11.

Figure 1. The K11 rover

3.2. Software

The K11 testbed software provides navigation, inter-module
communication (middleware), and telemetry functions. The
smartphone hosts a data acquisition module that collects data
from the phone’s sensors and sends it over a User Datagram
Protocol (UDP) socket to the onboard computer. The central
data acquisition software, running on the computer, receives
the data, merges it with the data received from the DAQ sys-
tem and the motor controllers, and records it in a unified data
file. A unified data stream is also transmitted to the ground
control station. The central data acquisition software on the
K11 is based on LabView from National Instruments. The
user interface on the ground station is also created in Lab-
View, and, among other functions, allows the operator to take
manual control.

Integration between the rover testbed (or its simulator) and
the reasoning algorithms is accomplished through a pub-
lish/subscribe architecture. The architecture is implemented
through the Internet Communication Engine, ICE (Henning,
2004). Standardized interface definition files are used to de-
scribe messages exchanged among the software and hardware

modules. The message types include command inputs, sen-
sor data, vehicle state information, fault diagnosis candidates,
as well as unordered and ordered waypoint lists. A central
server coordinates message exchanges among any number of
devices on the same network. In order to be integrated into
the architecture, a new reasoning module needs to only imple-
ment a minimal interface code necessary to register with the
ICE server and to publish/subscribe to the appropriate mes-
sages. For example, a diagnostic module would subscribe to
rover commands and sensor data and publish diagnostic mes-
sages. Thus the architecture allows for easy accommodation
of modules implemented in different programming languages
and running on dissimilar platforms.

Table 1. Measurements available on the K11

Measurement Type Comments Units
GPS Longitude and latitude deg
Gyroscope Roll, pitch, yaw rates rad/sec
Accelerometer 3-axis acceleration m/sec2

Magnetometer 3-axis magnetic field µT
Motor temperature On each motor (to be im-

plemented)
deg C

Battery temperature On each individual bat-
tery cell

deg C

Battery voltage On each individual bat-
tery cell

V

Position encoder On each individual motor counts
Total current A current sensor on the

power bus from the bat-
tery to the motor con-
trollers

A

Individual motor
current

Custom sensors on the
lines from the power bus
to the motors

A

3.3. Fault Injection and Accelerated Aging Techniques

A number of fault modes have been selected for implementa-
tion on the K11 testbed, summarized in Table 2. The criteria
for their selection include relevance to a variety of aerospace
vehicle types, feasibility of implementation, and the progres-
sion time from fault to failure. If the progression time is too
brief, then a meaningful prediction of remaining useful life
(and, consequently, actions based on it) may not be possi-
ble. On the other hand, if the fault-to-failure progression time
is measured in years, then executing experiments for those
fault modes is impractical. While faults in these two cate-
gories are outside of the scope of this research, that certainly
does not mean that they cannot (or should not) be handled
by a health management system. Abrupt failures, unless re-
sulting in a complete loss of control over the vehicle, can
still be detected and identified by a diagnoser, then analyzed
and acted upon by a decision-making system. Long duration
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fault modes (e.g. airframe component fatigue) can be mod-
eled with detailed simulations of future loads and operating
conditions. Ideally, long-term degradation would be tracked
from the time the vehicle (or a specific component) is new,
in order to allow for a better estimation of the current health
state.

Several modes described in Table 2 were selected for the ex-
periments in the initial phase of the project. The methods
for modeling progression of these faults are described in Sec-
tion 4. The techniques (current and planned) for injecting the
faults on the hardware testbed are described next.

Table 2. Potential fault types

Fault Mode Injection Method Subsystem
Battery capacity
degradation

Accelerated aging Power

Battery charge deple-
tion

Discharging Power

Parasitic electric load Programmable Power
distribution

Motor driver faults Electronic com-
ponents replace-
ment with aged
units

Power
distribution

Motor controller fail-
ure

Software Electro-
mechanical

Increased motor fric-
tion

Mechanical brake Electro-
mechanical

Sensor (bias, drift,
scaling, or failure)

Software Sensors

Out of the modes listed in Table 2, battery charge depletion
is expected to have the shortest time of progression to fail-
ure (a few hours of continuous use at the most). The faults
with the longest time-to-failure values are expected to be
the electronic component faults, possibly taking on the order
of months to fail (assuming the current fault seeding tech-
niques). The other fault modes fall somewhere in between
these two cases.

3.3.1. Remaining Battery Charge Tracking

While not being, in the strict sense, a fault, tracking the re-
maining battery charge will be one of the main tasks for the
prognostic system. End-of-charge is an end-of-life criterion,
so the remaining charge estimate will be an important fac-
tor for the PDM software. Most battery-powered vehicles
incorporate some form of state-of-charge (SOC) monitoring.
Usually SOC monitoring is based on Coulomb counting, i.e.
integrating the current drawn over time, divided by the rated
capacity of the battery. We will use a somewhat more ro-
bust, model-based approach, described in Section 7.2 (see
also (Saha & Goebel, 2009; Saha, Quach, & Goebel, 2012)).

3.3.2. Battery Capacity Degradation

As the rover batteries go through charge/discharge cycles,
their capacity to hold charge diminishes. The degradation
rate will depend on several factors, such as imposed loads,
environmental conditions, and charge procedures. For exam-
ple, lithium-ion chemistry batteries undergo higher rates of
capacity fade with higher current draw and operational tem-
peratures. Even at rest, this type of battery has chemical pro-
cesses occurring that have long-term effects - for instance,
latent self-discharge and transient recovery during relaxation
(Huggins, 2008). The depth-of-discharge and even the stor-
age temperature have major influences on the overall life of
the battery as well. The batteries will age naturally in the
course of rover operations, and one method of injecting this
fault is to use older, degraded batteries on the rover. The bat-
tery aging test stand (Saha & Goebel, 2009) at NASA Ames
will be used to age rover battery cells to a desired point in
their life cycle.

3.3.3. Parasitic Load

A parasitic electrical load will be injected on the main power
distribution line via a remotely controlled rheostat. The rheo-
stat can be set for resistance from 0 to 100 Ohms and is capa-
ble of dissipating up to 600 Watts of power. The rheostat will
simulate a situation where, for example, an accessory motor is
continuously engaged due to a failed limit microswitch. This
could also represent losses in efficiency in the power distri-
bution system, due to, for example, degradation of switching
elements.

3.3.4. Motor Controller Failure

Several types of motor controller faults will be emulated by
changing its settings. The simplest is to disable a controller
completely, simulating a failure in the system which leaves
the wheel unpowered but able to rotate. Another fault can
be injected by setting the commanded speed to 0, leaving the
wheel to drag (to the limit of the controller’s ability). Other
types of faults, including the effects of various software er-
rors, will also be investigated and implemented.

3.3.5. Increased Motor Friction

An increased friction fault (caused by a jam in the sup-
port bearing or the gearbox, for example) can result in de-
creased efficiency, increased current consumption, overheat-
ing of motor windings, deterioration of their insulation, and
eventual failure of the motor due to a short in the windings.
To ensure realism, a performance region for the motor will be
chosen where a healthy motor would have no problems keep-
ing up with either speed or load requirements. With friction
increased, however, the amount of current needed to satisfy
the same speed and load demands will be higher, leading to
overheating. Unless speed and/or load are reduced or duty cy-
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cle (the proportion of time the motor is on versus duration of
cool-down intervals) is adjusted, the heat build-up will even-
tually destroy the insulation of the windings and lead to motor
failure. This fault mode was first implemented in the simula-
tor and its model validated using experimental data collected
on smaller-sized motors that were run to failure under similar
conditions (Balaban, Saxena, Narasimhan, Roychoudhury, &
Goebel, 2011). More details on the model validation are
provided in Section 4.1. A hardware fault injection using a
mechanical brake on one of the rover motors is to be imple-
mented next. The motor will not be run to complete failure
initially; instead the model parameters and prognostic algo-
rithms will be validated in experiments stopping just short
of creating permanent damage. Eventually, experiments that
will take motors all the way to failure will be performed.

3.3.6. Sensor Faults

Sensor faults of particular interest are those that exhibit off-
nominal behavior for some time before the failure threshold is
reached, such as bias and drift faults. In order to simulate bias
and drift faults, constant and increasing offsets will be added
to the true measured sensor value, respectively. In addition
to bias and drift, other sensor fault modes useful for testing
the diagnostic components are ’stuck’ (where the sensor value
remains unchanged regardless of the system state) and scaling
(signal amplification fault).

Sensor faults will be injected by substituting the sensor’s
value with a different one before sending the data to the rea-
soning algorithms (Poll et al., 2007; Balaban, Saxena, Bansal,
Goebel, & Curran, 2009; Balaban, Saxena, et al., 2011). If the
characteristics of a fault can be determined with an acceptable
degree of certainty, the decision-making system can attempt
to compensate for it by adjusting the output value accordingly
(in the case of a drift, bias, or scaling fault) or removing the
sensor from the set of active measurements (in the case of a
‘stuck’ fault).

4. TESTBED SIMULATOR

As previously mentioned, a simulator has been developed to
aid in the design of PDM algorithms and use in the decision-
making process. It captures both nominal and faulty behavior,
with a controlled ability to inject faults. In this way, it serves
as a virtual testbed through which algorithms can be initially
tested and validated. In this section, we describe the underly-
ing physics model used in the simulator.

4.1. Rover Modeling

The rover consists of a symmetric rigid frame with four
independently-driven wheels. Generalized rover coordinates
are shown in Figure 2, where the rover pose is given by
(x, y, θ). The rover length is denoted by l, the width by b,
and the distance from the rover center to each wheel by d.

Figure 2. Generalized rover coordinates

4.1.1. Rover Body

Wheels are denoted with F , B, L, and R subscripts, standing
for front, left, back, and right, respectively, so a wheel w is
labeled from the set {FL,FR,BL,BR}. The forces acting
on the rover body are summarized in Figure 3. The slip force
on wheel w, Fsw, is described by

Fsw = µs(vw − v), (1)

where µs is a friction coefficient, vw is the translational wheel
velocity, and v is the translation velocity of the rover body.
When there is a difference between vw and v, slip is present
and the resulting force acts to push the wheel parallel to the
ground. When the rover is turning, there are friction forces
acting on the wheels opposing the sliding caused by the rota-
tional velocity. The rotational friction force Fgrw is described
by

Fgrw = µgrdω, (2)

where µgr is a friction coefficient, and ω is the rotational ve-
locity of the rover.

Figure 3. Rover forces

The translational and rotational rover velocities can be ex-
pressed based on these forces1. The translational velocity v

1Note that velocity in the lateral direction is negligible (Mandow et al., 2007).
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of the rover can be obtained from

v̇ =
1

m
(FsFL + FsFR + FsBL + FsBR

+ (FgrFL − FgrFR + FgrBL − FgrBR) cos γ),

where m is the rover mass, γ = arctan l
b , and the cos γ term

projects the Fgrw forces onto the translational direction. The
rotational velocity ω can be obtained from

ω̇ =
1

J
(d(FsFR + FsBR − FsFL − FsBL) cos γ

− d(FgrFL − FgrFR − FgrBL − FgrBR)),

where J is the rover rotational inertia and the moments are
taken in the counter-clockwise direction.

The rotational velocities of the wheels are determined by the
torques produced by the ground forces, as well as the motor
torque, τmw = kτ iw, where iw is the motor current and kτ
is an energy transformation gain; and an axle friction torque
that opposes the wheel rotation, τfw = sign(τfw0

) +µfwωw,
where τfw0

is the static friction torque and µfw is a fric-
tion coefficient. In addition, while rolling, due to the de-
formation of the wheel on the rolling surface, an upward-
pointing rolling resistance force is produced ahead of the
wheel center, creating a torque that opposes the rotation.
The torque depends on speed and can be approximated by
τrrw = sign(ωw)τrrw0

+ krrωw (Genta, 1997), where τrrw0

is a static friction torque and krr is an empirical parameter.
The wheel speeds are thus governed by

ω̇FL =
1

Jm
(τmFL − τfFL − τsFL − τrrFL + τgrFL) ,

(3)

ω̇FR =
1

Jm
(τmFR − τfFR − τsFR − τrrFR − τgrFR) ,

(4)

ω̇BL =
1

Jm
(τmBL − τfBL − τsBL − τrrBL + τgrBL) ,

(5)

ω̇BR =
1

Jm
(τmBR − τfBR − τsFR − τrrBR − τgrBR) ,

(6)

where Jm denotes the wheel/motor inertia; τsw = rwFsw
is the torque due to slippage, where rw is the wheel radius;
τgtw = rwFgtw is the torque due to the translational rover
friction force; and τgrw = rwFgrw cos γ is the torque due to
the rotational rover friction force.

The rover pose is then described by

ẋ = v cos θ, (7)
ẏ = v sin θ, (8)

θ̇ = ω. (9)

4.1.2. Motors

The wheels are driven by direct-current (DC) motors with
proportional-integral-derivative (PID) control that sets the
voltages V applied to the motors as a pulse-width modulated
(PWM) signal. Here, we ignore the PWM dynamics and as-
sume an averaged model. For wheel w, the motor currents iw
are governed by

diw
dt

=
1

L
(Vw − iwRw − kωωw). (10)

Here, L is the motor inductance, R is the motor resistance,
and kω is an energy transformation term. The voltages ap-
plied to the motors are determined by the controllers, where
for wheel w, Vw = P · (uw −ωw) + I · eiw +D · edw, where
P is a proportional gain, uw is the commanded wheel speed,
I is an integral gain, eiw is the integral error term, D is a
derivative gain, and edw is the derivative error term.

The motor controllers take in total battery voltage VB and
step it down to apply to the motors to control the speed. The
currents drawn from the batteries by each motor controller,
ibw for wheel w, respect a power balance with some loss due
to motor controller power efficiency. For wheel w, these cur-
rents are therefore determined as

ibw =
ηwVwiw
VB

, (11)

where ηw is the motor controller power efficiency.

The motor windings are designed to withstand temperatures
up to a certain point, after which, the insulation breaks down,
the windings short, and the motor fails. It is therefore impor-
tant to model the temperature behavior of the motor. The mo-
tor thermocouple is located on the motor surface. The surface
loses heat to the environment and is heated indirectly by the
windings, which, in turn, are heated up by the current passing
through them. The temperature of the windings for the motor
of wheel w is given by

Ṫdw =
1

Cdw

(
i2wR− hdw(Tdw − Tmw)

)
, (12)

where Cdw is the thermal capacitance of the windings, hdw is
a heat transfer coefficient, and Tsw is the motor surface tem-
perature (Balaban, Narasimhan, et al., 2011). It is assumed
that heat is lost only to the motor surface, and that winding
resistance R is approximately constant for the temperature
range considered. The surface temperature of the motor for
wheel w is given by
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Ṫsw =
1

Csw
(hdw(Tdw − Tsw)− haw(Tsw − Ta)), (13)

where Csw is the thermal capacitance of the motor surface,
haw is a heat transfer coefficient, and Ta is the ambient tem-
perature. Heat is transferred from the windings to the surface
and lost to the environment.

The motor temperature model was validated for DC motors
using experimental data collected on the Flyable Electro-
Mechanical Actuator (FLEA) testbed (Balaban et al., 2010).
The unknown parameters Cdw, Csw, hdw, haw, and R were
identified to match data acquired from a scenario where the
motor was overloaded and, as a result, heated up consider-
ably. The motor current and surface temperatures were mea-
sured. A comparison of predicted vs. measured temperature
is shown in Figure 4.
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Figure 4. Comparison of measured and model-predicted mo-
tor surface temperature for a DC motor

4.1.3. Batteries

The input voltage to the motors is provided by the rover bat-
teries. The battery model is based on an electrical circuit
equivalent shown in Figure 5, and extends the model pre-
sented in (Daigle, Saxena, & Goebel, 2012) that is similar to
models presented in (Chen & Rincon-Mora, 2006; Ceraolo,
2000). The large capacitance Cb holds the charge qb of the
battery. The RCP -CCP pair captures the major nonlinear
voltage drop due to concentration polarization, Rs-Cs pair
captures the so-called I-R drop, and Rp models the parasitic
resistance that accounts for self-discharge. This simple bat-
tery model is enough to capture the major dynamics of the
battery, but ignores temperature effects and other minor bat-
tery processes.

The state-of-charge, SOC, is computed as

SOC = 1− qmax − qb
Cmax

, (14)

where qb is the current charge in the battery (related to Cb),
qmax is the maximum possible charge, andCmax is the maxi-
mum possible capacity. The concentration polarization resis-
tance is a nonlinear function of SOC:

RCP = RCP0 +RCP1 exp (RCP2(1− SOC)), (15)

where RCP0, RCP1, and RCP2 are empirical parameters.
The resistance, and, hence, the voltage drop, increases ex-
ponentially as SOC decreases (Saha et al., 2012).

Figure 5. Battery equivalent circuit

Voltage drops across the individual circuit elements are given
by

Vb =
qb
Cb
, (16)

VCP =
qCP
CCP

, (17)

Vs =
qs
Cs
, (18)

Vp = Vb − VCP − Vs, (19)

where qCP is the charge associated with the capacitance
CCP , and qs is the charge associated with Cs. The voltage
Vb is also the open-circuit voltage of the battery, which is
a nonlinear function of SOC (Chen & Rincon-Mora, 2006).
This is captured by expressing Cb as a third-order polynomial
function of SOC. The terminal voltage of the battery is

V = Vb − VCP − Vs. (20)

Currents associated with the individual circuit elements are
given by

ip =
Vp
Rp

, (21)

ib = ip + i, (22)

iCP = ib −
VCP
RCP

, (23)

is = ib −
Vs
Rs

, (24)

where i = ibFL + ibFR + ibBL + ibBR is the battery current
at the terminals.
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The charges are then governed by

q̇b = −ib, (25)
q̇CP = iCP , (26)
q̇s = is. (27)

The battery temperatures are modeled with a simple thermal
model described as follows. For battery k, the temperature is
described by

Ṫbk =
1

Cbtk

(
Rbtki

2
b + hbtk(Ta − Tbk)

)
, (28)

where Cbtk is a thermal capacitance, Rbtk is a thermal resis-
tance, ib is the total battery current, and hbtk is a heat transfer
coefficient.

Two parallel sets of batteries power the rover. Each set con-
sists of 12 cells connected in series to provide a nominal of
48 V. When fully charged, each cell provides up to 4.2 V.
The current i is split between the two sets, so each individual
battery is drained by a current of i/2 when balanced.

The battery model was validated with data from the battery
testbed at NASA Ames Research Center (Saha & Goebel,
2009). A comparison of real and measured voltage for a con-
stant discharge is shown in Figure 6, where it is clear that the
model predicts a nominal discharge curve very accurately.

4.1.4. Sensors

Sensors measure the voltages and temperatures of the batter-
ies (Vbi and Tbi), the motor currents (ibw), the total current
(i), the motor temperatures (Tmw), the wheel positions, and
the wheel speeds (ωw).

The phone provides additional GPS, accelerometer, gyro-
scope, and magnetometer sensors. The nominal output of the
GPS sensor is modeled as

λ = λ0 + arctan

(
y

rE

)
, (29)

φ = φ0 + arctan

(
x

rE

)
, (30)

h = h0, (31)

where λ0 is the initial latitude, φ0 is the initial longitude,
and rE is the radius of the Earth. Here, we assume that the
rover does not undergo elevation changes within the measure-
ment interval (∆h = 0) and that the curvature of the Earth is
approximately flat within the rover’s operating range. The
phone also provides accelerometer, gyroscope, and magne-
tometer measurements. The accelerometer readings in the x,
y, and z directions are computed as

ax = v̇ cos(θ) + ẇ
l

2
cos

(
θ +

π

2

)
, (32)

ay = v̇ sin(θ) + ẇ
l

2
sin

(
θ +

π

2

)
, (33)

az = 9.81. (34)

For the gyroscope, we assume that the only rotation is along
the z-axis, so

gx = 0, (35)
gy = 0, (36)
gz = ω. (37)

For the magnetometer, since we assume only rotation about
the z-axis, we have

mx = M sin(θ + θd) · cos θi, (38)
my = M cos(θ + θd) · cos θi, (39)
mz = M · sin θi, (40)

where M is the maximum output of the magnetometer in any
one axis for the area of operation, θd is the declination angle
from true north (the angle between magnetic and true north
at the rover location), and θi is the inclination angle from
horizontal.
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Figure 6. Comparison of measured and model-predicted bat-
tery voltage for a single battery cell

4.2. Fault Modeling

Most faults are captured in the model as changes in parameter
values. For example, increased motor friction is represented
through changes in the friction coefficients (µfw), and inter-
nal resistance increases in the batteries associated with aging
are represented through changes in Rs and RCP . A parasitic
load on the batteries is captured as an additional current, ipl,
that is drawn from the batteries. Sensor faults are captured
with bias, drift, and gain terms. Ranges for typical fault mag-
nitude values have been identified through a literature search
and discussions with manufacturers (Balaban et al., 2009).
Faults in common sensors, such as current, voltage, tempera-
ture, and position, are modeled.
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4.3. End of Life Constraints

We are interested in predicting when any of the rover battery
cells are at their voltage threshold, beyond which the cells
will be damaged. The constraints are given as

ci : Vi > V −, i ∈ {1, 2, 3, 4}, (41)

where the voltage threshold is given by V − = 3.0 V.

We are also interested in when the motor temperature gets too
high. The motors windings are designed to withstand temper-
atures up to a certain point, after which, the insulation breaks
down, the windings short, and the motor fails (see subsection
3.3). The constraints are given as

c5 : TdFL < T+
d , (42)

c6 : TdFR < T+
d , (43)

c7 : TdBL < T+
d , (44)

c8 : TdBR < T+
d , (45)

where the temperature limit is given by T+
d = 70◦ C.

The rover cannot be operated when one or more of these con-
straints are violated.

5. INTEGRATED ARCHITECTURE

A typical rover mission consists of visiting and performing
desired science functions at a set of predetermined waypoints
W = {(xi, yi), ri}Ni=1, where ri is the reward associated with
location (xi, yi). An autonomous PDM system for the rover
determines the order to visit the waypoints and the speed vi
to travel between them, so as to maximize the reward while
minimizing the power used and health deterioration. When
diagnostic and prognostic information is available, the deci-
sion making system may alter the waypoint list (reduce and/or
reorder) to minimize the impact of the faults and slow their
progression over time. Figure 7 presents the integrated deci-
sion making architecture, which consists of four main compo-
nents, namely (i) locomotion controller (LC), (ii) diagnostics
(DX), (iii) prognostics (PX), and (iv) decision making (DM).

The LC is responsible for guiding the rover to the current
waypoint, wi = {{xi, yi}, ri}, by commanding individual
wheel velocities to be vt at time, t. The rover is a skid-steered
vehicle, meaning that the wheels cannot be steered and the
rover is rotated by commanding the wheel speeds on the left
and right sides to different values. The low-level controller
must be robust to drive system faults, therefore, it receives
the current diagnosis Ft from the DX algorithm.

The DX module takes in the inputs ut and sensor data zt,
and reasons about faults in the system. The DX runs contin-
uously, trying to detect when a fault (or faults) occur, isolate
the actual fault(s) from a set of possible candidates, and iden-
tify fault magnitudes. In case of a fault, as a diagnosis Ft

becomes available, it is passed on to the LC for mitigation,
as well as to the prognoser, which uses the information as a
starting point for predicting fault progression.

If an off-nominal condition is detected, the PX module begins
to continuously estimate the health state of the affected com-
ponents (and the rover overall) and generates predictions of
the remaining useful life, RULt. RUL is the time until the
system violates functional or performance constraints. The
RUL prediction is conditional on the future usage of the ve-
hicle, determined by the waypoint list.

The DM module is responsible for planning under nominal
and faulty conditions. At the mission start, the DM gets a
set W of desired waypoints. The DM also has a terrain map
M that describes the geographical layout of the terrain on
which the waypoints are located. The DM then, based on
the predicted power usage and RUL predictions, determines
an ordered (and possibly reduced) list of waypoints. A num-
ber of different protocols may be implemented for invoking
the module. For example, after the first solution is produced,
the DM may be called again if PX predictions start diverging
substantially from the initial ones. Alternatively, DM may be
called after each waypoint is reached.

We anticipate that the architecture described in this section
can be applied with only minimal changes to an aerial test
vehicle, such as the Edge 540 unmanned aerial vehicle de-
scribed in (Hogge, Quach, Vazquez, & Hill, 2011). Motion
control components would, of course, need to be adapted to
operate with six degrees of freedom instead of three. Execu-
tion of the reasoning algorithms would need to be optimized
to accommodate the faster position change rates and to ac-
count for the fact that an aerial vehicle, unlike a rover, does
not have the option of pausing motion while a fault is being
analyzed or a new course of action is being formulated.

6. LOCOMOTION CONTROL

The task of the locomotion controller is to direct the rover to
a given waypoint wi = {(xi, yi), ri} by sending appropri-
ate wheel speed commands to the individual motors based on
the estimated pose (x̂, ŷ, θ̂). We define two different control
strategies: one which does not take into account diagnostic
information and one that does.

6.1. Proportional Control

The waypoint wi and desired cruise speed uv are given as
inputs to the proportional controller. It implements a pro-
portional control based on the error between the current esti-
mated heading θ̂ and the desired heading θ∗, eθ. The average
wheel speed is set to uv and the desired speeds of the left and
right sides are set to turn toward the waypoint based on eθ:
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uL = uv − Pθeθ, (46)
uR = uv + Pθeθ, (47)

where Pθ is the proportional gain. The individual wheel
speeds are then set to

uFL = uL, (48)
uFR = uR, (49)
uBL = uL, (50)
uBR = uR. (51)

6.2. Differential Speed

In the proportional control, the wheel speeds on one side of
the rover are always set to the same value. However, if a
motor friction fault is present on one side of the rover, then
it is more efficient overall to increase the desired velocity of
the good wheel and decrease the velocity of the faulty wheel
on that side. The optimal amount of change depends on the
magnitude of the friction fault.

This controller uses the proportional control as the basis and
modifies its outputs based on the value of the friction coeffi-
cient. First it computes nominal wheel speeds for the left and
right sides (equations 46-47). Then, it modifies the speeds
commanded to the front and back wheels on each side ac-
cording to the estimated friction coefficient.

uFL = uL
2

1 +
1+µfFL

1+µfBL

, (52)

uFR = uR
2

1 +
1+µfFR

1+µfBR

, (53)

uBL = uL
2

1 +
1+µfBL

1+µfFL

, (54)

uBR = uR
2

1 +
1+µfBR

1+µfFR

. (55)

Note, from equations 52 and 54, that

uFL + uBL
2

= uL. (56)

Similarly, from equations 53 and 55

uFR + uBR
2

= uR. (57)

On a given side of the rover, if the friction on the front wheel
is larger than friction on the back wheel, the speed of the
front wheel is decreased and the speed of the back wheel is
increased. If the back wheel has more friction than the front
wheel, its speed is decreased while the speed on the front
wheel is increased. The overall speed on that side of the rover
remains the same, but the total current drawn is less than if
both wheels were set to the same speed.

7. REASONING ALGORITHMS

The primary purpose for building the K11 is to enable
hardware-in-the-loop testing of reasoning algorithms (diag-
nostic, prognostic, and decision-making). The current set of
algorithms, in addition to demonstrating certain novel PDM
ideas, serves to validate the integrated reasoning architecture
and the concept of operations for the testbed. Some of the
algorithms have been used in previous research efforts (e.g.
Qualitative Event-based Diagnosis (QED), Hybrid Diagnos-
tic Engine (HyDE), and some of the prognostic methods),
while others are being developed concurrently with the K11.
The details of the algorithms are provided in the rest of this
section.

7.1. Diagnosis

Diagnosis involves detection, isolation, and identification of
faults. A fault is a change in the system that causes its be-
havior to deviate from nominal. Detection involves deter-
mining when a fault occurs based on some observable symp-
toms. Isolation involves determining the true fault out of a
set of, possibly, several fault candidates, and identification is
the process of determining the extent of the damage to the
system. Numerous diagnosis approaches exist in the litera-
ture. We apply two model-based diagnosis approaches to the
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rover testbed: the QED algorithm and the HyDE, both devel-
oped at NASA Ames Research Center on the basis of earlier
work at Vanderbilt University (the algorithms are overviewed
in the following subsections). The motivation for two distinct
algorithms to be used in the same role is to demonstrate the
ability of the testbed to easily accommodate reasoning algo-
rithms from different sources, as long as they adhere to the
same interfaces. Several diagnostic algorithms could even,
potentially, run in parallel, with their output aggregated by a
higher level reasoner.

7.1.1. QED

QED, described in (Daigle & Roychoudhury, 2010), utilizes
a qualitative diagnosis methodology that isolates faults based
on the transients they cause in system behavior, manifesting
as deviations in residual values (Mosterman & Biswas, 1999).
Transients produced by faults are abstracted using qualita-
tive + (increase), - (decrease), and 0 (no change) values to
form fault signatures. Fault signatures represent these mea-
surement deviations from nominal behavior as the immediate
(discontinuous) change in magnitude and the first nonzero
derivative change. These symbols are computed from the
residuals using symbol generation. In addition to signatures,
QED captures the temporal order of measurement deviations,
termed relative measurement orderings. The fault signatures
and measurement orderings can be computed manually or au-
tomatically from a system model. They are compared with
observed signatures and orderings in order to isolate faults.
The combination of signatures and orderings establishes an
event-based fault isolation framework.

QED uses the model of the rover described in Section 4.
Given this model, fault signatures and measurement orderings
are derived. Algebraic functions computing fault magnitudes
are also derived and used for fault identification.

7.1.2. HyDE

HyDE is a consistency-based diagnosis engine that uses hy-
brid (discrete/continuous) models and reasoning (Narasimhan
& Browston, 2007). The models are also allowed to incor-
porate stochastic behavior. Users first build models of con-
stituent components of the system and then compose the sys-
tem model by defining the connections between the compo-
nents. Component models include a set of discrete modes
(nominal or off-nominal) the components could be in and the
behavior of the component in each mode. A transition from a
nominal mode to a fault mode indicates an occurrence of the
corresponding fault. At any point in time, HyDE maintains a
set of candidates that offer alternative versions of the system
state that are consistent with the sensor observations seen so
far (the size of the candidate set can be limited). When ad-
ditional observations become available, the candidate set is
pruned of inconsistent candidates and augmented with new

consistent candidates. Several parameters are available to ad-
just the performance of the engine, including heuristics to de-
termine the candidate ranking or the type of system simula-
tion used.

Similarly to QED, the HyDE model for the rover was de-
veloped directly from the simulation models, with the com-
ponents and equations in one-to-one correspondence. Fault
modes were defined for all of the sensors, as well as for the
motors (increased friction fault) and batteries (parasitic load
fault).

7.2. Prognosis

Prognosis is concerned with predicting the end of (useful) life
(EOL) and RUL of a component, subsystem, or system. EOL
is defined as the earliest time point at which the system no
longer meets specified functional or performance constraints,
and RUL is the time remaining until that point. These con-
straints do not necessarily have to correspond to complete
failure, e.g., for the rover we are interested in when a bat-
tery reaches end-of-discharge. In order to predict EOL/RUL,
we require an estimate of the current system state (including
known fault conditions), some estimate of the future usage of
the system, and some model that can predict the evolution of
the system state up to EOL. This model may be determined
through physical modeling of the system (Daigle, Saha, &
Goebel, 2012) or through data-driven methods (Schwabacher,
2005).

For the rover, prognostics algorithms can be used for several
components. For the batteries, we must predict when a bat-
tery will be fully discharged, because the rover cannot be op-
erated beyond that point. This has obvious implications for
decision-making. As the batteries are used over several rover
missions, they will naturally age and the capacity rating will
drop, therefore we must also predict when the battery capac-
ity falls below the required minimum. For the drive motors,
we need to predict when an overheating may occur, since it
can lead to permanent motor damage.

7.2.1. Model-based Prognosis

The model-based prognosis paradigm (Orchard, 2007;
Daigle, Saha, & Goebel, 2012) consists of two steps: (i) state
estimation, which computes a joint state-parameter estimate
of the system, and (ii) prediction, which simulates the model
forward from a given health state out to the EOL threshold,
based on hypothesized future inputs to the system. State esti-
mation can be performed with Kalman filters (Celaya, Kulka-
rni, Biswas, & K., 2012), unscented Kalman filters (Daigle,
Saha, & Goebel, 2012), particle filters (Orchard, 2007; Saha
& Goebel, 2009; Daigle & Goebel, 2011), or similar algo-
rithms. Prediction is typically performed by sampling from
the state estimate and simulating each sample to EOL, tak-
ing into account process noise and future input uncertainty
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(Daigle, Saxena, & Goebel, 2012).

The prediction step requires knowledge of the future usage of
the system. For the rover, this involves the expected future
trajectory and environmental inputs, such as the terrain and
the ambient temperature. The physics models developed for
the simulator can be utilized in both the estimation and pre-
diction phases. Damage progression processes that are diffi-
cult to model may require the use of data-driven prognostics
methods.

As an example of the model-based prognosis approach, con-
sider prognostics of the rover batteries. In this particular case,
we predict when the battery voltage will decrease to 3 V (fo-
cusing on one particular battery). The total current drawn
from the batteries is shown in Figure 8a (recall that each indi-
vidual battery sees only half that current). The measured and
estimated voltages are shown in Figure 8b. The battery does
not start at full charge (which would be approximately 4.2 V)
and so reaches EOL around 1800 s. The estimated battery
SOC is shown in Figure 8c, and, according to the model, the
battery starts at only 22% SOC. The corresponding prediction
results, assuming future inputs known exactly, are shown in
Figure 8d. As can be seen, the predictions are very accurate
from early on in the process, which means that, since the fu-
ture inputs are known, the model is accurate in the open loop.

7.2.2. Data-driven Prognosis

In data-driven prognostics the degradation model for a fault
mode is learned from training data. While potentially requir-
ing less domain knowledge a priori than model-based tech-
niques, reliance on availability of such data can be a limiting
factor in some types of practical applications. Methods such
as Neural Networks, Relevance Vector Machines, and Gaus-
sian Process Regression (GPR) have been utilized for data-
driven prognostics (Schwabacher, 2005).

In this work a machine-learning algorithm based on GPR is
used to predict when the interior of a drive motor would reach
the temperature at which insulation of the windings is likely
to melt, thus disabling the motor. This fault mode is likely
to occur if the motor, in addition to its nominal load, has to
compensate for increased mechanical friction. An increase in
friction can occur due, for example, to a failed bearing or a
damaged gear inside the gearbox (please refer back to sub-
section 3.3 for more details). The thermal build-up model, as
described in the Section 4, will be used for comparison.

The GPR-based algorithm was previously tested in prognos-
tic experiments involving motor faults in electro-mechanical
actuators (Balaban, Saxena, et al., 2011). An increased fric-
tion fault was injected and the relevant sensor data collected
as the actuator continued to be used in a degraded state (var-
ious position and load profiles were utilized in the experi-
ments). Several motors were run to complete failure, with

GPR demonstrating a high accuracy in predicting their re-
maining useful life.

GPR does not need explicit fault growth models and can
be made computationally less expensive by sampling tech-
niques. Further, it provides variance bounds around the
predicted trajectory to represent the associated confidence
(Rasmussen & Williams, 2006). Domain knowledge avail-
able from the process is encoded by the covariance function
that defines the relationship between data points in a time se-
ries. In our present implementation, a Neural Network type
covariance function is used.

7.3. Decision Making

The overall objective of this work is to develop PDM algo-
rithms that enhance a vehicle’s capability to achieve its high-
level goals - be it under a localized fault condition, degraded
operation of a subsystem, or an anticipated catastrophic fail-
ure. There has been an increasing volume of research con-
ducted over the last several years in prognostic methodolo-
gies for various types of components or systems. The ef-
fort described in this section aims to bring more attention to
the management aspect of prognostic health management, i.e.
what could be done after a fault is detected and a prognostic
prediction for it is produced.

While the components involved and the particulars of each
off-nominal situation may be different, there are, however,
common elements in all of them. There is always an objec-
tive (or a set of objectives) to be met and a series of actions to
be selected by the decision making process in order the meet
those objectives. In many circumstances a satisfactory solu-
tion (one that satisfies constraints defined for the system) is all
that is required; in this work, however, we chose to define the
decision-making process as an optimization problem, where
a Pareto Optimal Set of solutions (Fudenberg & Tirole, 1991)
is produced given the objectives, prognostic system estimates,
system constraints, and the projected future operating condi-
tions. The Pareto formulation is used to accommodate multi-
ple potential objectives.

Some of our initial work in PDM was described in (Balaban,
Narasimhan, et al., 2011). A more recent publication
(Balaban & Alonso, 2012) provides a PDM problem formu-
lation from a multi-objective optimization point of view and
describes the overall approach being pursued. The current
work focuses on the following aspects of PDM: (i) decom-
position of the overall decision-making problem into smaller
subproblems; (ii) subproblem modeling methods; (iii) sub-
problem decision-making algorithms; and (iv) methods for
adjusting problem formulations (such as constraints or objec-
tives) in real-time, if necessitated by prognostic predictions
in off-nominal situations.

Two K11-related case studies are used in research in these
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Figure 8. Battery prognosis results

four areas. One involves relaxation of the maximum oper-
ating temperature constraints on the batteries and motors in
order to achieve a desired destination in the presence of an
increased friction fault. The other is built around the way-
points optimization scenario mentioned in the earlier parts of
the paper and described in detail in Section 8.

For the constraint relaxation case study, both a method to
perform system decomposition from the game-theoretic per-
spective and an approach to adjust select system constraints
(if that is needed to satisfy high-priority performance goals)
are explored. Decomposition is performed based on the
subsystem-level abstraction, where the subsystems cooper-
ate in exploring the (potentially) very large option space by
taking turns in searching for a suitable solution. The current
formulation of the decomposition algorithm tests the concept
for two rover subsystems (power and propulsion), with exten-
sion to larger numbers of subsystems planned for subsequent
versions.

The waypoints optimization case study forms the basis of
the experiments covered in this paper. It motivated the work
of exploring decision-making models suitable for PDM and
algorithms capable of using the models to generate an op-
timal action policy in the presence of system degradation,

multiple objectives, uncertainty, and constraints. The gen-
eral modeling approach currently used for waypoints opti-
mization is Partially Observable Markov Decision Process,
POMDP (Cassandra, Kaelbling, & Littman, 1995). Several
algorithms have been applied to generate solutions. Dynamic
Programming, backtracking search, and Particle Filter are
among them. In the set of experiments presented in the next
section a stochastic algorithm patterned on the Probability
Collectives (PC) approach (Wolpert, 2006) is used. The al-
gorithm belongs to the class of blackbox optimization meth-
ods. Such methods, generally, have the goal of finding a value
x ∈ X that minimizes an associated value F (x). X is an op-
timization space and F (x) could be an objective or a utility
function. The following process is repeated iteratively: (1) an
x is chosen from X; (2) statistical information about F (x) is
updated; (3) the next value of x is chosen using the (x, F (x))
pairs found up to that point. For waypoint optimization, par-
tial paths form the optimization space X and objective func-
tions are created for scientific payoff, energy use, and vehicle
health. Further details on the approach and the algorithm im-
plemented are provided in (Balaban & Alonso, 2012).
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8. EXPERIMENTS AND RESULTS

This section provides examples of integrated prognostics-
enabled decision making on a set of fault scenarios executed
on the K11 simulator. The case study presented is that of the
rover starting its mission at a waypoint w0 and attempting to
visit, at an average speed of 0.5 m/s, a set of other 10 way-
points, accomplishing a scientific objective at each. As men-
tioned previously, every waypoint is associated with a reward
value and the primary objective is to maximize the cumula-
tive reward. In absence of system faults the rover has enough
energy stored in its batteries to visit all of the waypoints. In
addition to this nominal scenario, however, three fault sce-
narios are considered: a parasitic load in the power distribu-
tion system, increased motor friction (Figure 9), and a battery
voltage sensor fault. In the fault scenarios, the diagnostic sys-
tem is expected to detect and identify the fault mode during
the w0 → w1 transition. The decision-making system is then
expected to modify the waypoint traversal plan, taking into
account prognostic estimates of future energy consumption
and fault magnitude progression. An a posteriori estimate of
change in these two quantities during thew0 → w1 transition,
given the fault diagnosis, is made as well.

8.1. Battery Parasitic Load Fault

As a first scenario, we consider an abrupt parasitic load fault
that draws an additional amount of current from the batteries.
A parasitic current of 0.1 A is injected starting at 50 s. As a
result, the net current increases and the battery voltages de-
crease in response to the increased current. No other effects
appear, but the batteries will drain faster and therefore path
analysis will have to be performed to determine if all of the
waypoints can still be visited with this increased load. See
Figure 10 for a diagram that illustrates the timing of various
events in this scenario.

QED detects the fault at 50.4 s with an increase in i, the cur-
rent drawn from the batteries. The candidate set reduces to:
motor failures, motor friction faults, the parasitic load fault,
and a bias or drift in the current sensor. At 51.2 s, the change
is determined to be abrupt, eliminating the friction faults and
the drift fault. At 76.15 s, a decrease in the voltage of battery
4 is detected. This eliminates the current sensor fault, since
it would not affect another sensor, and eliminates the motor
failure faults, as these would cause a change in individual mo-
tor currents before a change in voltage (i.e., there is a relative
measurement ordering for these faults expressing this con-
straint), thus uniquely isolating the parasitic load fault. The
parasitic current is computed as the difference between the
battery current and the sum of the motor currents, averaged
from the time of detection to the present time. At 51.2 s,
the value of the parasitic current is estimated at 0.127 A. By
100 s, the estimate is at 0.103 A.

HyDE detects the fault at 50.05 and isolates the fault to either

a parasitic load or one of the motors being in an unknown
mode.2 In addition, HyDE was tested on a double fault sce-
nario where there is a battery parasitic load and the battery
current sensor is faulty. HyDE is able to use other sensors
to determine this condition. The overall result is the same as
with the parasitic load fault, since sensor faults do not affect
the decision-making.
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Figure 9. Sensor readings for motor friction fault

Prognosis begins once the fault is identified. Here, we de-
termine when the batteries will reach end-of-discharge with
the current mission plan. The prognosis algorithm reports
that the batteries will reach this point in 3.83 h (as opposed
to 4.54 h without the fault). Continuing at an average speed
of 0.5 m/s, the rover can cover about 6.9 km with the fault
(8.2 without the fault). Since the rover must cover at least
6.9 km to visit all of the waypoints, mission optimization is
required. The DM module estimates that there will not be

2In the unknown mode, the behavior of the motor is undefined and hence
it could be drawing more current. However, unknown faults are catch-all
modes that should be considered only when no other explanations are avail-
able.
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Figure 10. Timing diagram for the battery parasitic load fault scenario
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Figure 11. Decision making results (with r1 = 40, r2 = 50, r3 = 30, r4 = 20, r5 = 60, r6 = 40, r7 = 100, r8 = 50, r9 = 30,
and r10 = 60)

enough energy to visit all of the waypoints and eliminates
waypoints 9 and 4 from the plan, reconfiguring the path to be
qs = {1, 6, 3, 5, 2, 8, 10, 7}. See Figure 11 for the decision-
making results under different scenarios.

8.2. Motor Friction Fault

As a second scenario, we consider a motor friction fault in
the back-left motor (Figure 9). The friction coefficient value
is increased by a factor of 10 at 50 s. As a result, the motor
current increases because its PID controller is still trying to
maintain the wheel speed at the same level. This corresponds
to an increase in the total current drawn from the batteries and
an accelerated rate of discharge (and, thus, decreased RUL).
The motor temperature also rises due to the increased current
draw, and this can lead to an EOL condition of the motor due
to the overheating. As a result, decision making will have to
optimize RUL with respect to battery life and motor health.

QED detects the fault at 50.15 s with an increase in vBL, the

velocity of the back-left wheel 9. The candidate set reduces to
a failure of the back-left motor, increased friction in the back-
left motor, and a bias or drift in the vBL sensor. At 50.25 s, an
increase in both i and iBL are detected, eliminating the motor
failure fault (which would have decreased the current) and
the faults in the vBL sensor (since they cannot affect any other
sensors), leaving the motor friction fault as the sole candidate.
The friction value is computed using the steady-state wheel
speed equation, averaged from the time of detection to the
present time. At 50.25 the friction value is estimated at 1.47
times its nominal value. By 100 s, the estimate is at 10.1 times
its nominal value. HyDE is also able to diagnose this fault
at 50.2. However, HyDE does not support fault magnitude
estimation (identification). See Figure 12 for a diagram that
illustrates the timing of various events in this scenario.

Prognosis begins once the fault is identified. Here, multi-
ple possible future input trajectories may be assumed that
will help with decision making. The increase in current
due to the fault will cause the batteries to discharge earlier
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Figure 12. Timing diagram for the motor friction fault
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Figure 13. Timing diagram for the voltage sensor fault

than expected, and the increase in motor temperature may
bring the motor to its EOL due to overheating. According
to the prognosis algorithm, the overheating event occurs in
1423 s if the rover continues to travel at the same speed and
at 4084 s at 80% speed (0.4 m/s). At 60% speed (0.3 m/s), the
steady-state value of the temperature is below motor temper-
ature limit, so the rover can travel indefinitely without over-
heating the motor, and EOL is determined solely by battery
end-of-discharge, which ends up being 6313 s. However, if
the friction-robust controller is used, then the overall current
draw decreases and motor overheating can be prevented. Fur-
thermore, less overall current is drawn from the batteries for
the same forward speed of the rover, resulting in improved
RULs of 4283 s at normal speed (0.5 m/s), 6004 s at 0.4 m/s,
and 8897 s at 0.3 m/s.

If the non-robust LC is used, the decision-making mod-
ule considers traverses with different speeds (0.3, 0.4, and
0.5 m/s) in order to arrive at the optimal payoff. Traveling
at 0.5 m/s does not allow the rover to visit any of the other
waypoints due to high energy draw. Traveling at 0.4 m/s
gets the rover to waypoints 3 and 6, with R(qs)=11. Reduc-
ing the speed further to 0.3 m/s allows the rover to get to
a higher-reward (but more difficult to get to) waypoint 7 in-
stead (R(qs)=14). Consequently, the rover speed is reduced
to 0.3 m/s. Introducing the friction-robust LC allows to keep
the motor temperature within safe limits at any of the speeds
considered and, due to the reduced power draw, makes it pos-
sible to accomplish longer traverses: qs = {1, 2, 5} at 0.5 m/s
(R(qs)=15); qs = {1, 6, 3, 5} at 0.4 m/s (R(qs)=17); and
qs = {1, 3, 5, 2} at 0.3 m/s (R(qs)=18). Since travel time
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is not one of the optimization constraints, the lower speed of
0.3 m/s is therefore selected (Figure 11).

8.3. Voltage Sensor Fault

As a third scenario, we consider a bias fault in the voltage
sensor of battery cell 1. The bias has a value of 0.5 V and is
injected at 50 s. QED detects the fault at 50.3 s, and, since
no other faults can produce an increase in voltage, only bias
and drift faults in the voltage sensor are valid candidates. At
50.9 s, the change is determined to be abrupt, isolating the
bias fault as the only candidate. The bias value is estimated
to be 0.51 V. HyDE is able to detect a voltage sensor fault on
Battery 1 at 50.1. However the HyDE model does not try to
further isolate the fault as a bias or drift. The timing of the
events is shown in Figure 13.

Because the fault was determined to be in a sensor (and one
that is not part of a control loop), the rover was deemed to
be capable of operating without reconfiguration or mission
changes required. Therefore, neither the prognoser nor the
decision-making module were invoked.

In all of the above scenarios the PC-based decision-making
algorithm produced the same results as a (much slower) ex-
haustive search algorithm. The latter was used as a determin-
istic way to verify the general correctness of the former. The
maximum number of the remaining waypoints was limited
to 10 as beyond that running the exhaustive search algorithm
became impractical (with execution times of 300 seconds or
longer). Execution times for the PC-based algorithm largely
depended on the hyperparameter values used (see Balaban
and Alonso (2012)) for a more in-depth discussion on the
subject), however the algorithm appeared to be suitable for
real-time use even on scenarios involving 25 waypoints (the
maximum number attempted). While the results produced by
PC and other approximate algorithms will degrade in accu-
racy and repeatability as the number of waypoints grows, the
size of the search space in problems of this type may still
leave them as the best option.

9. CONCLUSIONS

The work described in this paper is aimed at providing an
inexpensive, safe platform for development, evaluation, and
comparison of prognostics-enabled decision-making algo-
rithms. Technologies resulting from this research are planned
to be transferred for further maturation on unmanned aerial
vehicles and other complex systems. At present, the K11
testbed already constitutes a promising platform for PDM re-
search. A list of fault modes of interest has been identified
and a number of them have been implemented in software
and/or hardware. A software simulator has been developed
that incorporates models of both nominal and off-nominal be-
havior, with the models validated using experimental data.
The software architecture for the testbed has been defined in

such a way as to allow quick replacement of autonomy el-
ements depending on the testing objectives and customers.
The sensor suite and the data acquisition system support a
wide range of reasoning algorithms. The first set of such algo-
rithms, for performing diagnostics, prognostics, and decision-
making, is being deployed and tested. At this point it has been
tested in simulation on scenarios involving battery parasitic
load, increased motor friction, and voltage sensor faults.

Plans for the near future include addition of further hardware-
injectable fault modes, field experiments of greater complex-
ity, simulator model refinement, and extension of PDM meth-
ods to handle more complex problems, including constraints
relaxation when the situation requires that. Data collected on
the testbed is planned for distribution to other researchers in
the field.
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