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ABSTRACT

Diagnosis and prognosis are necessary tasks for
system reconfiguration and fault-adaptive control
in complex systems. Diagnosis consists of detec-
tion, isolation and identification of faults, while
prognosis consists of prediction of the remain-
ing useful life of systems. This paper presents an
integrated model-based distributed diagnosis and
prognosis framework, where system decomposi-
tion is used to perform the diagnosis and prog-
nosis tasks in a distributed way. We show how
different submodels can be automatically con-
structed to solve the local diagnosis and prog-
nosis problems. We illustrate our approach us-
ing a simulated four-wheeled rover for different
fault scenarios. Our experiments show that our
approach correctly performs fault diagnosis and
prognosis in a robust manner.

1 INTRODUCTION
Systems health monitoring is essential to guarantee-
ing the safe, efficient, and reliable operation of engi-
neering systems. Integrated systems health manage-
ment methodologies include fault diagnosis and prog-
nosis mechanisms, where diagnosis involves detecting
when a fault has occurred, isolating the true fault, and
identifying the true damage to the system; and progno-
sis involves predicting how much useful life remains
in the different components, subsystems, or systems
given the diagnosed fault conditions. The information
on the fault size and its expected impact on system life
can be used to initiate recovery and reconfiguration ac-
tions that mitigate the fault or extend system life.

A large body of research exists for both model-
based diagnosis (Gertler, 1998; Blanke et al., 2006)
and prognosis methods (Luo et al., 2008; Saha et
al., 2009). However, the integration of diagnosis and
prognosis algorithms is seldom studied (Patrick et al.,
2007; Orchard and Vachtsevanos, 2009). In fact, many
diagnosis methodologies leave out the fault identifi-
cation step, which is necessary to perform a predic-
tion from the current system state. Recently, we pre-
sented an integrated model-based framework for di-

agnosis and prognosis of complex systems, in which
we made use of a common modeling framework for
modeling both the nominal and faulty system behav-
ior (Roychoudhury and Daigle, 2011). However, this
integrated solution performs the diagnosis and prog-
nosis task in a centralized fashion, which is prone to
single points of failure, and does not scale well as the
size of the system increases.

To overcome such problems, in this work, we lever-
age recent results for distributed diagnosis (Bregon
et al., 2011) and distributed prognosis (Daigle et al.,
2012a), which make use of structural model decompo-
sition techniques, to provide a systematic approach to
distributing the different diagnosis and prognosis steps
presented in (Roychoudhury and Daigle, 2011).

Distributed diagnosis is achieved by designing local
distributed subsystems based on global diagnosability
analysis of the system, thus computing globally correct
distributed diagnosis results without the use of a cen-
tralized coordinator (Bregon et al., 2011). These local
distributed subsystems are then used to construct local
event-based distributed diagnosers for distributed fault
isolation. Distributed fault identification is achieved
by developing independent local state-parameter es-
timators for each hypothesized fault. Regarding dis-
tributed prediction, in (Daigle et al., 2012a) we de-
veloped an architecture that enables a large progno-
sis problem to be decomposed into several indepen-
dent local subproblems from which local results can
be merged into a global result.

The main contribution of this paper is an integrated
framework for distributed model-based diagnosis and
prognosis based on structural model decomposition.
The proposed framework scales well and the result-
ing subproblems are typically small and easy to solve,
resulting in a scalable distributed solution to the com-
bined diagnosis and prognosis problem. We perform
a number of experiments on a simulated four-wheeled
rover testbed (Balaban et al., 2011) to demonstrate and
evaluate our approach.

The rest of the paper is organized as follows. Sec-
tion 2 provides the problem formulation for our diag-
nosis and prognosis framework. Section 3 describes
the distributed architecture and Section 4 briefly intro-
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duces its different components. Section 5 presents the
case study and experimental results. Finally, Section 6
concludes the paper.

2 PROBLEM FORMULATION
The nominal system model is represented as follows:

ẋ(t) = f(t,x(t),θ(t),u(t),v(t)),
y(t) = h(t,x(t),θ(t),u(t),n(t)),

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is
the parameter vector, u(t) ∈ Rnu is the input vector,
v(t) ∈ Rnv is the process noise vector, f is the state
equation, y(t) ∈ Rny is the output vector, n(t) ∈ Rnn
is the measurement noise vector, and h is the output
equation.1

Faults in the system are represented as changes in
the above nominal system model. In this work, we
only consider single faults occurring as changes in sys-
tem parameters, θ(t). We denote a fault, f ∈ F , as a
tuple, (θ, gf ), where, θ ∈ θ is the fault parameter, and
gf denotes the fault progression function, which mod-
els the way fault f is manifested in parameter θ, i.e.,

θ̇(t) = gf (t,xf (t),θf (t),u(t),mf (t)),

where xf (t) = [x(t), θ(t)]T , θf (t) = [θ(t)\{θ(t)},
φf (t)]T , φf (t) ∈ Rnφf is a vector of fault progres-
sion parameters, and mf (t) ∈ Rnmf is a process noise
vector associated with the fault progression function.

To develop our integrated diagnosis and progno-
sis framework, the faulty system model for fault f =
(θ, gf ) is constructed from the nominal system model
by including the parameter as a state and augmenting
the state equation by including the fault progression
function, i.e.,

ẋf (t) = ff (t,xf (t),θf (t),u(t),v(t)),
y(t) = h(t,x(t),θ(t),u(t),n(t)),

where,

ff (·) =
[

f(t,x(t),θ(t),u(t),v(t))
gf (t,xf (t),θf (t),u(t),m(t))

]
=

[
ẋ(t)
θ̇(t)

]
The goal of diagnosis is to: (i) detect a change in

some θ ∈ θ; (ii) isolate, under the single fault assump-
tion, the true fault f ∈ F , i.e., both the parameter θ
that has changed, and its fault progression function gf ;
and (iii) identify the fault by computing the fault es-
timate, p(xf (t),θf (t)|y(0 : t)), where y(0 : t) denotes
all measurements observed up to time t.

The goal of prognosis is to determine the end of
(useful) life (EOL) of a system, and/or its remaining
useful life (RUL). For a given fault, f , using the fault
estimate, p(xf (t),θf (t)|y(0 : t)), a probability distri-
bution of EOL, p(EOLf (tP )|y(0 : tP )), and/or RUL,
p(RULf (tP )|y(0 : tP )) is computed at a given time
point tP (Daigle et al., 2012b). Since there is inher-
ent uncertainty in the state-parameter estimate, process
noise, and uncertainty in the future inputs, we predict

1Here, we use bold typeface to denote vectors, and use
na to denote the length of a vector a.

a probability distribution rather than single EOL/RUL
values. The acceptable behavior of the system is ex-
pressed through a set of nc constraints, CEOLf =
{ci}nci=1, where ci : Rnxf × Rnθf × Rnu → B maps
a given point in the joint state-parameter space given
the current inputs, (xf (t),θf (t),u(t)), to the Boolean
domain B , [0, 1], where ci(xf (t),θf (t),u(t)) = 1
if the constraint is satisfied (Daigle et al., 2012b).
If ci(xf (t),θf (t),u(t)) = 0, then the constraint
is not satisfied, and the behavior of the system is
deemed to be unacceptable. These individual con-
straints are combined into a single threshold func-
tion TEOLf : Rnxf × Rnθf × Rnu → B, such that
TEOLf (xf (t),θf (t),u(t)) = 1 if these constraints are
valid, and TEOLf (xf (t),θf (t),u(t)) = 0 otherwise.

So, EOLf may be defined as EOLf (tP ) , inf{t ∈
R : t ≥ tP and TEOLf (xf (t),θf (t),u(t)) = 1}. i.e.,
EOL is the earliest time point at which the threshold is
reached. RUL is expressed given EOL as RULf (tP ) ,
EOLf (tP )− tP .
3 DISTRIBUTED ARCHITECTURE
For a large system, both the diagnosis and prognosis
problems are correspondingly large. A centralized ap-
proach does not scale well, can be computationally ex-
pensive, and prone to single points of failure. There-
fore, we propose to distribute the global integrated di-
agnosis and prognosis problem into independent local
subproblems. In this work, we build on ideas from
structural model decomposition (Blanke et al., 2006;
Pulido and Alonso-González, 2004) to compute local
independent subproblems, which may be solved in par-
allel, thus providing scalability and efficiency.

Structural model decomposition allows decompos-
ing a global model into a set of local submodels for
which local diagnosis and prognosis problems can be
directly defined. The global model of the system, de-
noted asM, is defined as follows.
Definition 1 (Model). The model of a system,M, is a
tupleM = (X,Θ, U, Y, C), whereX is the set of state
variables of x, Θ is the set of unknown parameters of
θ, U is the set of input variables of u, Y is the set
of output variables of y, and C is the set of model
constraints of f , h, and EOL constraints of CEOLf .

Model decomposition is accomplished by using
some variables (either measured variables or variables
for which the values are known) as local inputs, Ui.
Submodels computed in this way are computationally
independent of each other. A submodel is then defined
as follows.
Definition 2 (Submodel). A submodel Mi of a sys-
tem model M = (X,Θ, U, Y, C) is a tuple Mi =
(Xi,Θi, Ui, Yi, Ci), where Xi ⊆ X , Θi ⊆ Θ, Ui ⊆
X ∪U ∪Y , and Yi ⊆ Y are the state, parameter, input,
and output variables, respectively, and Ci ⊆ C are the
submodel constraints.2

The basic idea of the model decomposition problem
is to decompose the global system model into a set of

2A faulty submodel for a fault f is denoted asMi(f).
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Figure 1: An instantiation of the integrated diagnosis and prognosis architecture.

submodels satisfying given constraints. Next, we dis-
cuss the fundamental ideas of our approach and show
the constraints needed to obtain the different submod-
els for distributed diagnosis and prognosis. Then, we
propose our integrated approach.

3.1 Model Decomposition for Distributed
Diagnosis and Prognosis

The first model decomposition problem computes
minimal submodels from the nominal system model.
For this model decomposition problem, constraints
are that submodels use the global model inputs and
some measured values as local inputs, i.e., Ui ⊆
U ∪ (Y − Yi). An algorithm for computing the set
of minimal submodels that satisfy these properties is
given in (Daigle et al., 2011), which is based on the
model decomposition algorithms presented in (Pulido
and Alonso-González, 2004; Bregon et al., 2012).

The second model decomposition problem com-
putes submodels for residual generation and fault iso-
lation. For this model decomposition problem, con-
straints are that submodels are constructed by merging
the minimal submodels, to fulfill global diagnosabil-
ity conditions as in (Bregon et al., 2011).3 Once the
globally diagnosable subsystems have been designed,
the merged submodels are used for distributed resid-
ual generation and to compute event-based local di-
agnosers for fault isolation. These design and diag-
noser computation processes are detailed in (Bregon
et al., 2011). Because the subsystems are designed to
be globally diagnosable, the resulting local diagnosers
are independent, and can provide globally correct di-
agnosis results without a centralized coordinator.

The third model decomposition problem computes
submodels for distributed fault identification. For each
consistent fault hypothesis f , the joint state-parameter
estimators are computed from the minimal submodels
of the faulty system modelM(f) with the constraints
that Ui ⊆ U ∪ (Y − Yi) with Yi as a singleton. It will
be shown later that the fault identification module is
the central part of our diagnosis-prognosis integration
approach and provides the joint state-parameter esti-
mations for the prediction module.

3In this work, a subsystem is globally diagnosable if all
faults in the subsystem are distinguishable from every other
fault in the system using only local measurements.

Finally, for distributed prediction, the model de-
composition problem starts off from the faulty system
model, and, as detailed in (Daigle et al., 2012a), it ful-
fills the following constraints: (i) the submodels use
Ui ⊆ UP , where UP ⊆ X ∪ U (here, UP is a set of
variables whose future values can be predicted a pri-
ori, which depends on the hypothesized faults); and (ii)
each computed submodel has at least one c ∈ CEOLf
belonging toCi, and over all submodels, all constraints
in CEOLf are covered. This ensures that TEOLf may
be computed for the system from the local constraints.

3.2 Distributed Architecture
Figure 1 illustrates an example architecture for our dis-
tributed diagnosis and prognosis scheme. At each dis-
crete time step, k, the system takes as input both uk
and yk and splits them into local inputs uik and lo-
cal outputs yik for the local diagnosers. Within each
Mi local diagnoser, nominal tracking is performed,
computing estimates of nominal measurements, ŷik.
The fault detector compares the estimated measure-
ments against the observed measurements, to deter-
mine statistically significant deviations for the resid-
ual, rik = yik − ŷik. Qualitative values of the de-
viations in the residuals are used by the event-based
diagnoser to isolate faults. The set of isolated fault
candidates Fik together with the estimated nominal

states, x̂ik, parameters, θ̂
i

k, and the measurements, yik,
are used as input for the corresponding identification
module. Identification is performed for each hypoth-
esized fault in a distributed way, e.g., for the iso-
lated faults f1 and f2 in Figure 1, we run an instan-
tiation of the identification submodel for each one of
the faults, i.e., M1(f1) and M1(f2). Fault identi-
fication uses the minimal submodels from the faulty
system model, and computes local state-parameter es-
timates p(xif,k,θ

i
f,k|yi0:k). These local estimates are

then used as input to the prediction submodels. In
some cases, the local estimates have to be split or
merged with other estimates according to the predic-
tion submodels. For example, estimates fromM1(f1),
are used by both local prediction submodels M4(f1)
andM5(f1), and those submodels may also need es-
timates not included within submodelM1(f1). These
estimates are typically obtained from the local diag-
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nosers or other fault identification blocks.4 Distributed
prediction modules compute, for each hypothesized
fault, local EOL/RUL predictions, p(EOLif,kP |yi0:kP )
and p(RULif,kP |yi0:kP ), at given prediction time kP
based on the local EOL constraints. Finally, lo-
cal predictions are combined into global predictions
p(EOLf,kP |y0:kP ) and p(RULf,kP |y0:kP ) for each
hypothesized fault. The next section describes the de-
tails of the different modules of the distributed inte-
grated diagnosis and prognosis architecture.

4 DIAGNOSIS AND PROGNOSIS APPROACH
Figure 1 shows the basic modules of our distributed
integrated approach. In this section we give details on
how each module is implemented, and establish the in-
tegration between the diagnosis and prognosis tasks.

4.1 Distributed Diagnosis
For distributed diagnosis, each local diagnoser first
takes a subset of the local inputs uik and local outputs
yik, to compute an estimate of its output measurements
ŷik. Tracking is performed in discrete time using a ro-
bust filtering scheme, e.g., the extended or unscented
Kalman filter (Julier and Uhlmann, 2004), which pro-
vides accurate tracking in the presence of sensor noise,
process noise, and discretization error.

For fault detection, a statistical test is used to look
for significant deviations in the residual signal rik,
which is computed as the difference between ŷik and
the yik. In our approach, we use a Z-test as described
in (Biswas et al., 2003).

Fault isolation is performed using local event-based
diagnosers, constructed as detailed in the previous sec-
tion (Bregon et al., 2011; Daigle et al., 2009). Fault
isolation is triggered when a fault is detected, and it
works as follows. Initially, all event-based local diag-
nosers start in their initial state, and the set of faulty
candidates is empty. Local residual deviations cause
the local diagnosers to move from one state to another.
These residual deviations are abstracted to a tuple of
qualitative symbols (σ1, σ2) for each residual signal,
where σ1 represents magnitude changes and σ2 repre-
sents slope changes. A + (resp. −) value indicates a
change above (resp. below) normal for a measurement
residual or a positive (resp. negative) residual slope.
A 0 implies no change in the measurement value or
a flat residual slope. The symbols are generated us-
ing a sliding window technique as described in detail
in (Biswas et al., 2003). If there is a match between an
event from the current state and a tuple of qualitative
symbols generated by any residual, the local diagnoser
moves to the next state and remains active. If not, the
local diagnoser blocks. This process continues until a
local diagnoser reaches an accepting state, which cor-
responds to a unique isolation result.

4Since prediction submodels are constructed by using
any variable which value can be hypothesized as input, in
some cases, prediction submodels cannot always be formed
by just merging the minimal estimation submodels. To in-
dicate this, we named our prediction submodels differently
from the estimation submodels, e.g., M4(f1) andM5(f1)
instead ofM1(f1).

In our distributed diagnosis approach, identifi-
cation submodels, Mi(f), are obtained, as ex-
plained in the previous section, as minimal submod-
els from the faulty system model. A local state-
parameter estimator is constructed for each identifi-
cation submodel Mi(f), and produces a local esti-
mate p(xif,k,θ

i
f,k|yi0:k) by using an appropriate algo-

rithm. In this paper, we use an unscented Kalman fil-
ter (UKF) (Julier and Uhlmann, 2004) with a variance
control algorithm (Daigle et al., 2012b).

4.2 Distributed Prognosis

The local state-parameter estimates for each local dis-
tributed prediction module are constructed from the lo-
cal estimates of the distributed fault identification sub-
models. Each prediction submodel is made up of a set
of states Xi and parameters Θi, and constructs a local
distribution p(xif,k,θ

i
f,k|yi0:k), by assuming that the

local state-parameter estimates are sufficiently repre-
sented by a mean µi and covariance Σi. For each pre-
diction submodelMi(f), we combine the estimates of
the local identification submodels that estimate states
and parameters in Xi ∪ Θi into µi and Σi. If two
submodels estimate the same state variable or parame-
ter, then many different techniques can be applied de-
pending on the desired performance of the prediction
submodels, e.g., taking the estimate with the smallest
variance, or taking an average.

Several approaches can be used to perform predic-
tion for each prediction submodel. In this work, given
the mean and covariance information, we represent the
distribution with a set of sigma points derived using the
unscented transform. Then, each sigma point is simu-
lated forward to EOL, and we recover the statistics of
the EOL distribution given by the sigma points (Daigle
and Goebel, 2010).

The algorithm presented in (Daigle et al., 2012b),
shows the pseudocode for the prediction procedure.
The algorithm is executed for each submodel i, de-
riving local EOL predictions using its local threshold
function based on the local EOL constraints. For a
given submodel, each sample j is propagated forward
until T iEOLf (xi(j)f,k ,θ

i(j)
f,k ) evaluates to 1. The algo-

rithm hypothesizes future inputs ûik. Then, the global
EOL/RUL is determined by the minimum of the local
EOL/RUL distributions for each prediction submodel,
i.e., p(EOLif,kP |yi0:kP ) and p(RULif,kP |yi0:kP ). To
compute this, we sample from each local EOL dis-
tribution and take the minimum of the local samples.
This process of sampling and taking the minimum
value is repeated many times and the statistics of the
global EOL distribution are computed (Daigle et al.,
2012a).

5 CASE STUDY

In this section, we apply our distributed diagnosis and
prognosis approach to a four-wheeled rover testbed de-
veloped at NASA Ames Research Center. We develop
a model of the rover, and demonstrate the approach us-
ing simulated scenarios.
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5.1 Nominal System Modeling
The rover model was originally presented in (Balaban
et al., 2011). In this section we summarize the main
features and include some extensions to the model.

The rover consists of a symmetric rigid frame with
four independently-driven wheels. The wheel speeds
are governed by

ω̇FL =
1

JFL
(τmFL − τfFL − τglFL + τgrFL) , (c1)

ω̇FR =
1

JFR
(τmFR − τfFR − τglFR − τgrFR) , (c2)

ω̇BL =
1

JBL
(τmBL − τfBL − τglBL + τgrBL) , (c3)

ω̇BR =
1

JBR
(τmBR − τfBR − τglFR − τgrBR) . (c4)

The F , B, L, and R subscripts stand for front, left,
back, and right, respectively. Here, for wheel w, Jw
denotes the wheel inertia; τmw is the motor torque;
τfw = µfwωw is the wheel friction torque, where
µfw is a friction coefficient; τglw = rwµgl(vw − v)
is the torque due to slippage, where rw is the wheel
radius, µgl is a friction coefficient, vw is the transla-
tional wheel velocity, and v is the translation veloc-
ity of the rover body; and τgrw = rwµgrwω cos γ is
the torque due to the rotational movement of the rover
body, where µgrw is a friction coefficient, ω is the ro-
tational velocity of the rover body, and γ = arctan l/b
with l being the rover’s length and b being its width.

The translational velocity v of the rover is described
by

v̇ =
1

m
(FglFL + FglFR + FglBL + FglBR) , (c5)

where m is the rover mass, and for wheel w, Fglw =
µgl(vw−v) is the force due to slippage. The rotational
velocity ω is described by

ω̇ =
1

J
(d cos γFglFR + d cos γFglBR − d cos γFglFL

− d cos γFglBL − dFgrFL − dFgrFR − dFgrBL

− dFgrBR). (c6)

Here, J is the rotational inertia of the rover and d is the
distance from the center of the rover to each wheel.

The wheels are driven by DC motors with PI control
that sets the voltages V applied to the motors. The
motor currents i are governed by

i̇FL =
1

L
(VFL − iFLRFL − kωωFL), (c7)

i̇FR =
1

L
(VFR − iFRRFR − kωωFR), (c8)

i̇BL =
1

L
(VBL − iBLRBL − kωωBL), (c9)

i̇BR =
1

L
(VBR − iBRRBR − kωωBR), (c10)

where L is the motor inductance, R is the motor resis-
tance, and kω is an energy transformation term. The
motor torque is τmw = kτ iw, where kτ is an energy
transformation gain. The voltages applied to the mo-
tors are determined by the controllers, where for wheel

w, Vw = P ∗ (uw − ωw) + I ∗ eiw, where P is a pro-
portional gain, uw is the commanded wheel speed, I is
an integral gain, and eiw is the integral error term. The
integral error terms are governed by

ėiFL = uFL − ωFL, (c11)
ėiFR = uFR − ωFR, (c12)
ėiBL = uBL − ωBL, (c13)
ėiBR = uBR − ωBR. (c14)

The batteries, which are connected in series, are de-
scribed by a simple electrical circuit equivalent model
that includes a large capacitance Cb in parallel with
a resistance Rp, together in series with another resis-
tance Rs.5 The battery charge variables qi are gov-
erned by

q̇1 = −V1/Rp1 − (iFL + iFR + iBR + iBL), (c15)
q̇2 = −V2/Rp2 − (iFL + iFR + iBR + iBL), (c16)
q̇3 = −V3/Rp3 − (iFL + iFR + iBR + iBL), (c17)
q̇4 = −V4/Rp4 − (iFL + iFR + iBR + iBL). (c18)

The available sensors measure the voltages of the
batteries,

V ∗
1 = q1/Cb1 −Rs1 ∗ (iFL + iFR + iBR + iBL), (c19)

V ∗
2 = q2/Cb2 −Rs2 ∗ (iFL + iFR + iBR + iBL), (c20)

V ∗
3 = q3/Cb3 −Rs3 ∗ (iFL + iFR + iBR + iBL), (c21)

V ∗
4 = q4/Cb4 −Rs4 ∗ (iFL + iFR + iBR + iBL), (c22)

the motor currents,

i∗FL = iFL, (c23)

i∗FR = iFR, (c24)

i∗BL = iBL, (c25)

i∗BR = iBR, (c26)

and the wheel speeds,

ω∗FL = ωFL, (c27)

ω∗FR = ωFR, (c28)

ω∗BL = ωBL, (c29)

ω∗BR = ωBR. (c30)

Here, the ∗ superscript indicates a measured value.

5.2 Faulty System Modeling
In this work, we consider different faults in the mo-
tors and the batteries. First, we consider friction-based
damage progression in the motors, resulting in an in-
crease in motor friction over time. For wheel w, the
fault progression function is defined as:

µ̇fFL = νfFL µfFL ω
2
FL, (c31)

µ̇fFR = νfFR µfFR ω2
FR, (c32)

µ̇fBL = νfBL µfBL ω
2
BL, (c33)

µ̇fBR = νfBR µfBR ω2
BR, (c34)

5We use a simple model here only for demonstration pur-
poses. More detailed battery models for prognosis can be
found in the literature, e.g., (Saha and Goebel, 2009).
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Submodel Xi Θi Ui Yi Ci

M1 q1 Cb1 i∗FL, i
∗
FR, i

∗
BL, i

∗
BR V ∗

1 c15,c19,c23,c24,c25,c26
M2 q2 Cb2 i∗FL, i

∗
FR, i

∗
BL, i

∗
BR V ∗

2 c16,c20,c23,c24,c25,c26
M3 q3 Cb3 i∗FL, i

∗
FR, i

∗
BL, i

∗
BR V ∗

3 c17,c21,c23,c24,c25,c26
M4 q4 Cb4 i∗FL, i

∗
FR, i

∗
BL, i

∗
BR V ∗

4 c18,c22,c23,c24,c25,c26
M5 iFL, eiFL RFL uFL, ω

∗
FL i∗FL c7,c11,c23,c27

M6 iFR, eiFR RFR uFR, ω
∗
FR i∗FR c8,c12,c24,c28

M7 iBL, eiBL RBL uBL, ω
∗
BL i∗BL c9,c13,c25,c29

M8 iBR, eiBR RBR uBR, ω
∗
BR i∗BR c10,c14,c26,c30

M9 ωFL, v, ω, µfFL νfFL i∗FL, ω
∗
FR, ω

∗
BL, ω

∗
BR ω∗FL c1,c31,c5,c6,c23,c28,c29,c30

M10 ωFR, v, ω, µfFR νfFR i∗FR, ω
∗
FL, ω

∗
BL, ω

∗
BR ω∗FR c2,c32,c5,c6,c24,c27,c29,c30

M11 ωBL, v, ω, µfBL νfBL i∗BL, ω
∗
FL, ω

∗
FR, ω

∗
BR ω∗BL c3,c33,c5,c6,c25,c27,c28,c30

M12 ωBR, v, ω, µfBR νfBR i∗BR, ω
∗
FL, ω

∗
FR, ω

∗
BL ω∗BR c4,c34,c5,c6,c26,c27,c28,c29

Table 1: Set of minimal submodels for the rover testbed computed from the nominal system model.

Submodel Xi Θi Ui Yi Ci

M5,9 ωFL, v, ω, µfFL, iFL, eiFL νfFL, RFL uFL, ω
∗
FR, ω

∗
BL, ω

∗
BR ω∗FL, i

∗
FL C5 ∪ C9

M6,10 ωFR, v, ω, µfFR, iFR, eiFR νfFR, RFR uFR, ω
∗
FL, ω

∗
BL, ω

∗
BR ω∗FR, i

∗
FR C6 ∪ C10

M7,11 ωBL, v, ω, µfBL, iBL, eiBL νfBL, RBL uBL, ω
∗
FL, ω

∗
FR, ω

∗
BR ω∗BL, i

∗
BL C7 ∪ C11

M8,12 ωBR, v, ω, µfBR, iBR, eiBR νfBR, RBR uBR, ω
∗
FL, ω

∗
FR, ω

∗
BL ω∗BR, i

∗
BR C8 ∪ C12

M1,2,3,4 q1, q2, q3, q4 Cb1, Cb2, Cb3, Cb4 i∗FL, i
∗
FR, i

∗
BL, i

∗
BR V ∗

1 , V
∗
2 , V

∗
3 , V

∗
4 C1 ∪ C2 ∪ C3 ∪ C4

Table 2: Residual generation and fault isolation submodels.

where µfw is the fault parameter, and νfw is the fault
progression parameter.

We also consider abrupt resistance increases in the
motors, represented as an abrupt change in parameter
Rw for wheel w, with ∆Rw as the fault progression
parameter.

For the batteries, we consider abrupt capacitance de-
creases, represented as an abrupt change in parameter
Cbi for capacity i. ∆Cbi is the fault progression pa-
rameter.

We are interested in predicting when any of the
rover batteries are at their charge threshold, beyond
which the batteries will be damaged. These faults can
cause the charge thresholds to be reached earlier since
they will affect current draw. The constraints are given
as

q1 > q−, (c35)

q2 > q−, (c36)

q3 > q−, (c37)

q4 > q−, (c38)

where the charge threshold is given by q− = 2×104 C.
The rover cannot be operated when any of the con-
straints c35–c38 are violated.

5.3 Results
To demonstrate the validity of the approach, we de-
scribe two different faulty scenarios of the rover. In
the first, friction damage is progressing on one motor,
and in the second, a capacitance decrease occurs in one
battery. In all cases, the rover travels between various
waypoints, moving at an average speed of 0.5 m/s. Ta-
ble 1 shows the minimal submodels for the rover de-
rived by using measured values as local inputs. Ta-
ble 2 shows the submodels for residual generation and
fault isolation. These submodels have been designed
to obtain globally diagnosable subsystems by using

Submodel Xi Θi Ui Yi Ci

M17(Cb1) q1, Cb1 ∆Cb1 iFL, iFR, iBL, iBR ∅ c15,c19,c35
M18(Cb2) q2, Cb2 ∆Cb2 iFL, iFR, iBL, iBR ∅ c16,c20,c36
M19(Cb3) q3, Cb3 ∆Cb3 iFL, iFR, iBL, iBR ∅ c17,c21,c37
M20(Cb4) q4, Cb4 ∆Cb4 iFL, iFR, iBL, iBR ∅ c18,c22,c38

Table 4: Prediction submodels for capacitance faults.

the design algorithm in (Bregon et al., 2011). In this
work, we have considered five subsystems, one for
each wheel’s components and another one for the bat-
teries. For example, the subsystem for the front left
wheel’s components is not globally diagnosable if we
only consider submodelM9 (which includes the front
left wheel friction wear parameter, νfFL). The design
algorithm in (Bregon et al., 2011) determines that we
need to merge submodels M5 and M9 to make the
front left wheel subsystem globally diagnosable. The
process is similar for the rest of the subsystems.

Minimal submodels for identification can be com-
puted from the minimal submodels in Table 1 by defin-
ing the fault progression function (if necessary), and
by making the fault parameter to become a state and
the corresponding fault progression parameter to be-
come the parameter. Regarding prediction, the correct
prediction submodels to use depend on the scenario, as
will be shown later.

Friction Damage Progression
We first consider a scenario in which, for the front-
left motor, the friction begins to increase. The friction
damage progression begins at t = 50 s with friction
wear parameter νfFL = 1×10−3 s. A fault is detected
by the local diagnoser computed from submodelM5,9
at 119.25 s, via an increase in the motor current iFL.
The initial candidate list is immediately reduced to one
candidate, {νfFL}, based on the signatures and order-
ings (other faults in the front left wheel, likeRFL, pro-
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Submodel Xi Θi Ui Yi Ci

M13(µfFL) q1, iFL, eiFL, ωFL, µfFL Cb1, νfFL, RFL uFL, v, ω, iFR, iBL, iBR ∅ c1,c31,c7,c11,c15,c35
M14(µfFL) q2, iFL, eiFL, ωFL, µfFL Cb2, νfFL, RFL uFL, v, ω, iFR, iBL, iBR ∅ c1,c31,c7,c11,c16,c36
M15(µfFL) q3, iFL, eiFL, ωFL, µfFL Cb3, νfFL, RFL uFL, v, ω, iFR, iBL, iBR ∅ c1,c31,c7,c11,c17,c37
M16(µfFL) q4, iFL, eiFL, ωFL, µfFL Cb4, νfFL, RFL uFL, v, ω, iFR, iBL, iBR ∅ c1,c31,c7,c11,c18,c38

Table 3: Prediction submodels using commanded wheel speeds and rover velocities as local inputs.
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Figure 2: Estimated νfFL values.

duce different fault signatures) (Daigle et al., 2009).
Thus the true fault is isolated.

Fault identification is initiated once the candidate is
isolated. For the friction damage progression fault, the
wear rate νfFL estimate averages to νfFL = 1×10−3

s with very small output error. Figure 2 shows the wear
parameter estimate for friction damage.

As a result of the continuously increasing friction,
the current drawn by the motor increases as well in
order for the motor controller to maintain the same
desired wheel speed . Hence, the total current drawn
from the batteries is increased, and EOL occurs around
half an hour. Because iFL is constantly changing, and
in a way that is dependent on the motor state, it is
incorrect to use it as a local input for prediction and
to decompose the prediction problem into independent
local prediction problems for the batteries and motors,
i.e., it is not known a priori. Therefore, we compute
submodels using as local inputs average values for the
remaining motor currents, average commanded wheel
speeds, and average rover translational velocity v and
rotational velocity ω. The prediction submodels for
this case are shown in Table 3. EOL for this fault is
computed by merging the local EOL from those sub-
models in the table. Note that the prediction submod-
els used in this case do not correspond directly to those
used for estimation. So, when constructing the esti-
mate forM13, for example, it takes the estimates from
M1 andM9.

The prediction results are shown in Figure 3. The in-
creased friction causes the batteries to discharge faster,
and EOL occurs around 1650 s. Here, we used the
relative accuracy (RA) as a measure of prediction ac-
curacy, and the relative standard deviation (RSD) as a
measure of spread. Each prediction metric is averaged
over multiple prediction points (one every 100 s of us-
age) (see (Saxena et al., 2010; Daigle et al., 2012b)
for the mathematical definitions of these metrics). For
this experiment, RA averages to 91.63% and RSD av-
erages to 16.26%.
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Figure 3: Predicted RUL of the rover. The mean is
indicated with a dot and confidence intervals for 5%
and 95% by lines. The gray cone depicts an accuracy
requirement of 15%.

Capacitance Decrease
As a second scenario, we consider a capacitance de-
crease fault in battery 3 of the rover, Cb3. The fault
begins at t = 50 s with an abrupt decrease from 2000
to 1800 in the capacity of the battery. The fault is de-
tected immediately by the local diagnoser computed
from submodel M1,2,3,4 at 50.0 s, via an increase in
the voltage V3. The fault candidate is immediately iso-
lated, {Cb3}, based on the signatures and orderings,
thus starting the fault identification. For the capaci-
tance fault, the estimated value of the capacitance av-
eraged Cb3 = 1798.6 C with very small output error.
As a result of the decrease in capacitance, the battery
discharges at a faster rate, and so reaches end of dis-
charge more quickly. The prediction submodels for
faults in the capacity of the batteries are shown in Ta-
ble 4. For this scenario, with a fault in Cb3, we used
submodelM19, obtaining RA average to 98.25% and
RSD average to 10.12%.

6 CONCLUSIONS
This paper presented a distributed integrated model-
based diagnosis and prognosis framework. Our ap-
proach starts off with a common modeling paradigm
to model both the nominal behavior and fault progres-
sion, and then proposes a framework where the models
are decomposed based on the requirements and con-
straints of each task. We demonstrated our approach
on a four-wheeled rover testbed, where we diagnosed
faults and prognosed the EOL/RUL accurately.

In future, we will apply this approach to larger sys-
tems, to study the scalability of our diagnosis and
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prognosis scheme; and expand the capability of this
approach to hybrid systems, as well as diagnosis and
prognosis of multiple faults.
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