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ABSTRACT

We describe two model-based diagnosis algo-
rithms entered into the Third International Diag-
nostic Competition. We focus on the first diag-
nostic problem of the industrial track of the com-
petition in which a diagnosis algorithm must de-
tect, isolate, and identify faults in an electrical
power distribution testbed in order to provide cor-
rect abort recommendations. Both diagnosis al-
gorithms are based on a qualitative event-based
fault isolation framework augmented with model-
based fault identification. Although based on a
common framework, the fundamental difference
between the two algorithms is that one is based on
a global model for residual generation, fault iso-
lation, and fault identification, whereas the other
uses a set of minimal submodels computed using
Possible Conflicts. We describe, compare, and
contrast the two algorithms in terms of practical
implementation and their diagnosis results.

1 INTRODUCTION
This paper presents a model-based, qualitative, event-
based fault diagnosis scheme that was entered
into the Third International Diagnostic Competition
(DXC’11). The competition allows for a compara-
tive study of different diagnostic approaches, and in-
cludes multiple diagnostic problems. We focus on di-
agnostic problem I (DPI) of the industrial track of the
competition, which consists of fault diagnosis and re-
covery for a subset of the Advanced Diagnosis and
Prognosis Testbed (ADAPT) (Poll et al., 2007), called
ADAPT-Lite, which is an electrical power distribu-
tion system. Our diagnosis scheme has two instan-
tiations, QED (Qualitative Event-based Diagnosis),
which is a revised version of the algorithm submit-
ted to DXC’10 (Daigle and Roychoudhury, 2010), and
QED-PC (QED with Possible Conflicts), which is a
new entry that utilizes Possible Conflicts (Pulido and
Alonso-González, 2004) as a basis for residual gener-
ation and fault identification.

QED extends the TRANSCEND diagnosis scheme
described in (Mosterman and Biswas, 1999). In this

scheme, fault isolation is achieved through analysis of
the transients produced by faults, manifesting as devia-
tions in observed behavior from predicted nominal be-
havior. We extend TRANSCEND by including relative
measurement orderings, which provide a partial or-
dering of measurement deviations for different faults,
leading to an enhanced event-based fault isolation
scheme (Daigle et al., 2009). DPI requires fault iden-
tification, and includes abrupt, incipient, and intermit-
tent faults. TRANSCEND deals only with abrupt faults,
so we incorporate methods for incipient faults (Roy-
choudhury, 2009) and intermittent faults (Daigle and
Roychoudhury, 2010).

The second algorithm, QED-PC, uses the Possi-
ble Conflicts (PCs) diagnosis approach (Pulido and
Alonso-González, 2004). This approach decomposes
the global system model into minimal submodels con-
taining sufficient analytical redundancy to generate
fault hypotheses from observed measurement devia-
tions. In this work, we combine the PCs together with
the qualitative fault isolation ideas from TRANSCEND.
Residuals are computed using the PCs (instead of the
global system model) and measurement deviations are
analyzed following the TRANSCEND ideas as in the
previous scheme. Then, for fault identification, we use
minimal parameter estimators computed from PCs for
each faulty parameter as described in (Bregon et al., to
appear).

The paper is organized as follows. First, Section 2
overviews the diagnosis approaches. Section 3 pro-
vides the system model. Section 4 describes fault de-
tection. Section 5 discusses fault isolation, and Sec-
tion 6 describes fault identification. Section 7 covers
fault recovery. Section 8 presents diagnosis results,
and Section 9 concludes the paper.

2 DIAGNOSIS APPROACH
The problem for DPI is to decide whether a mission
should be aborted or continued. To make this decision,
the diagnostic algorithm must determine if the system
is faulty, which fault has occurred, and the parameters
that define the fault behavior.

The implemented diagnosis architecture is shown
in Fig. 1, and reflects the implementation of both al-
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Figure 1: Diagnosis and recovery architecture.

Figure 2: ADAPT-Lite schematic.

gorithms. The system receives inputs u(t) and pro-
duces outputs y(t). The system model, given inputs
u(t), computes predicted values ŷ(t). The fault detec-
tion module decides whether a measurement has de-
viated from its nominal value in a statistically signif-
icant manner, triggering the fault isolation and identi-
fication modules. Measurement deviations, viewed as
events, are abstracted into a symbolic representation
using the symbol generator. The sequence of these
symbols, where a symbol is denoted by σ, is used to
isolate faults F . Fault isolation consists of candidate
generation at the point of fault detection, and hypothe-
sis refinement as new symbols are provided. Each fault
f ∈ F is associated with a component, a fault mode,
and a set of fault parameters. Fault identification com-
putes, for each fault f ∈ F , the values of the fault
parameters. An oracle (provided by DXC’11) is called
upon to decide for each fault f whether an abort is rec-
ommended, producing a set of recommendations R.
The decision module selects a recommendation from
R and outputs the associated control actions C.

3 SYSTEM MODELING

Our diagnosis approach is model-based, requiring a
model of both nominal and faulty behavior for use
throughout the diagnosis process. The two algorithms
implement the nominal model in a different way. For
QED, the nominal model is a global model of the sys-
temM, and its inputs are those of the global system.
For QED-PC, the nominal model is composed of a set
of 11 minimal submodels, with each submodelMi es-
timating the value of sensor i using a subset of the sys-
tem measurements as input variables. In the following,
we describe the models of nominal and faulty behav-
ior of the ADAPT-Lite system for QED and QED-PC,
indicating their similarities and differences.

3.1 Nominal Model

A schematic of ADAPT-Lite is given in Fig. 2. Sen-
sors prefixed with an “E” are voltage sensors, those
with an “IT” are current sensors, and those with “ISH”
or “ESH” are for states of circuit breakers and relays,
respectively. TE228 is the battery temperature sensor,
and ST516 is the fan speed sensor. Note that the in-
verter converts DC power to AC, and E265 and IT267
provide rms values of the AC waveforms.

Most of the global model and the corresponding PCs
are summarized in Table 1. Details may be found
in (Daigle and Roychoudhury, 2010). Here, vB and
iB are the battery voltage and current, v0 is the voltage
across C0, vs is the voltage across Cs, e is the inverter
efficiency, vinv is the inverter voltage on the DC side,
Rinv is the DC resistance of the inverter,Rdc is the DC
load resistance, Jfan is the fan inertia, and Bfan is a
damping parameter. Both QED and QED-PC assume
TE228, ISH236, and ESH244A are constant. The PCs
for E242 and E281 are simply other measured voltages
with a bias term added.

Most of the PCs are derived directly from the global
model, but in some cases, the PCs had to account for
additional dynamics. For example, the fan speed (ω)
has no dynamics during nominal operation because it
is always operated at the same speed. So, QED mod-
els the fan speed as a constant. QED-PC, on the other
hand, must model the dynamics, because some faults
independent of the fan submodel will cause the fan
speed to decrease through a decrease in E265, which
is an input to the PC.

A key difference, then, compared to the global
model, is that the behavior of each PC has to be nom-
inal not only for the nominal situation, but also for
those faulty situations where the faulty parameters are
independent of a PC. This decoupling requires a more
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Table 1: Models for the ADAPT-Lite System.

Global Model (QED) PCs (QED-PC)

v̇0 = 1
C0

(−iB) v̇s = 1
Cs

(iBRs − vs) v̇0 = 1
C0

(−IT240) v̇s = 1
Cs

(IT240Rs − vs)

vB = v0 − vs idc =
vB
Rdc

Ê240 = v0 − vs ÎT281 =
E281
Rdc

iinv =
vrmsirms

e · vinv
+
vinv

Rinv
iB = iinv + idc iinv =

E265 · IT267
e · E242

+
E242
Rinv

ÎT240 = iinv + IT281

irms =
vrms

Rfan
+
vrms

Rac
vrms = vinv,0 ÎT267 =

E265
Rfan

+
E265
Rac

Ê265 = vinv,0 − IT267
Rrms

ẇ = 0 ω̇ =
1

Jfan

(
E265
Bfan

− ω
)

ŜT516 = ω

(a) Offset. (b) Drift. (c) Intermittent offset.

Figure 3: Fault profiles.

detailed modeling of the system for the QED-PC algo-
rithm. This introduced some modeling difficulties, es-
pecially concerning IT240. In nominal operation, the
measured value averages around 16±2 A. When faults
occur, however, the value takes on a much wider range,
and the IT240 PC must accurately predict values in
the entire range due to faults that are decoupled from
the PC. This made the system identification task more
complex. System identification was also more com-
plex for QED-PC because sensor biases had to also be
considered for the inputs to the PCs.

3.2 Fault Modeling
We consider both parametric faults, defined as unex-
pected changes in system parameter values, and dis-
crete faults, defined as unexpected changes in the oper-
ating mode of a component. Parametric faults include
changes in the AC and DC resistances, Rac and Rdc,
and additive terms to sensor equations. Discrete faults
include stuck faults of the relays and circuit breakers,
inverter failure, load failure, fan overspeed and under-
speed faults, and sensor stuck faults. Note that sensor
stuck faults are defined as y(t) = c, where c is a con-
stant, and sensor noise is absent.

Parametric faults may assume offset, drift, and in-
termittent offset profiles, as defined in Fig. 3 (tf
denotes the time of fault occurrence). For an off-
set fault, we identify the offset ∆p; for a drift
fault, we identify the slope m; and for an inter-
mittent fault, we identify the mean offset µ∆p, i.e,
mean(∆p1,∆p2, . . .), the mean faulty time µf , i.e,
mean(∆tf1,∆tf2, . . .), and the mean time it is nomi-
nal µn, i.e, mean(∆tn1,∆tn2, . . .).

4 FAULT DETECTION
QED and QED-PC use the same approach for fault
detection and symbol generation, and is described

in (Daigle and Roychoudhury, 2010). Each sensor is
assigned a fault detector. For each sensor output y(t),
we define the residual as r(t) = y(t)−ŷ(t), where ŷ(t)
is the model-predicted output signal. As described in
the previous section, for QED, ŷ(t) is computed using
the global model, whereas for QED-PC, it is computed
using the PC for ŷ(t). Statistically significant nonzero
residual signals indicate faults.

Fault detection works by applying a Z-test to the
residual values. A threshold based on the Z-test is
computed, and to account for modeling error, an ad-
ditional error term E is added to the threshold. When
the absolute value of the mean residual value over a
small window (e.g., 5 samples) is over this combined
threshold, a fault is detected.

The error terms E for QED and QED-PC are listed
in Table 2. Overall, the thresholds are smaller for QED
than for QED-PC. For example, for E240, QED uses
a detection threshold of 0.09 compared to that of 0.1
used by QED-PC. Similarly, for E281, QED uses 0.15
as the detection threshold, while QED-PC uses 0.3,
and so on. Because the PC models had to capture
larger operational ranges for the sensors, the overall
accuracy was not as good as with the simpler global
model used by QED that had to capture only a small
range of values, so E tended to be larger. Also, PCs
use sensors as inputs, which are noisy, and this cor-
rupts the predictions with noise, which also leads to an
increase in E. Since the detectors were tuned to avoid
false alarms, the detectors for QED-PC could not be
tuned to be as sensitive as for QED.

5 FAULT ISOLATION
We utilize a qualitative diagnosis methodology that
isolates faults based on the transients they cause in sys-
tem behavior, manifesting as deviations in residual val-
ues (Mosterman and Biswas, 1999). In both QED and
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Table 2: E Values for Fault Detection.
Sensor QED QED-PC
E240 0.090 0.100

E242 0.080 0.100

E265 0.070 0.110

E281 0.150 0.300

ESH244A 0.000 0.000

ISH236 0.000 0.000

IT240 0.110 0.114

IT267 0.050 0.060

IT281 0.060 0.090

ST516 20.000 40.000

TE228 0.200 0.200

QED-PC, we define residuals, as described in the pre-
vious section, with respect to a particular sensor. The
main difference is the model that produces the estimate
ŷ for the residual.

The transients produced by faults are abstracted us-
ing qualitative + (increase), - (decrease), and 0 (no
change) values and N (zero to nonzero), Z (nonzero
to zero), and X (no discrete change) values to form
fault signatures. Fault signatures represent these mea-
surement deviations from nominal behavior as the im-
mediate (discontinuous) change in magnitude, the first
nonzero derivative change, and discrete zero/nonzero
value changes in the measurement from the estimate
caused by discrete faults. These symbols are com-
puted from the residuals using symbol generation, as
described in (Daigle and Roychoudhury, 2010).

In addition to signatures, for QED we also cap-
ture the temporal order of measurement deviations,
termed relative measurement orderings (Daigle et al.,
2009). Within the QED-PC algorithm, since measure-
ment orderings may be defined only within a given
submodel, we cannot define any orderings between
residuals of two different PCs, because they are decou-
pled. The predicted fault signatures and measurement
orderings can be computed manually or automatically
from a system model (Mosterman and Biswas, 1999;
Daigle, 2008). The predicted signatures and orderings
are compared with observed signatures and orderings
in order to isolate faults.

Selected fault signatures for ADAPT-Lite are shown
in Table 3 for QED and Table 4 for QED-PC, where
the first symbol is the immediate change in magni-
tude, the second is the slope, and the third is the dis-
crete change. For example, a positive offset in E240
will cause an abrupt increase in the E240 residual with
no change in slope, and no discrete change behavior
(+0X). No other sensors are affected (00X) by this
fault in the QED approach, but for the QED-PC al-
gorithm, an abrupt decrease in the E242 residual with
no change in slope, and no discrete change behavior
(-0X) is also caused, because sensor E240 is used as
input for the PC that estimates E242. A resistance
offset in AC483 causes multiple deviations for QED
but only one in IT267 for QED-PC, because the corre-
sponding parameter, Rac, is present only in the PC for
IT267.

Table 3: Selected Fault Signatures for the QED algo-
rithm for ADAPT-Lite
Fault E240 E242 IT281 IT267 ST516
AC483 ∆p > 0 +0X +0X +0X -0X 00X

DC485 ∆p > 0 +0X +0X -0X 00X 00X

E240 ∆p > 0 +0X 00X 00X 00X 00X

E240 m > 0 0+X 00X 00X 00X 00X

E240 µ∆p > 0 +0X 00X 00X 00X 00X

EY244 stuck open +0X -0Z -0Z -0Z 0-X

FAN416 underspeed +0X +0X 00X -0X -0X

Table 4: Selected Fault Signatures for the QED-PC al-
gorithm for ADAPT-Lite
Fault E240 E242 IT281 IT267 ST516
AC483 ∆p > 0 00X 00X 00X -0X 00X

DC485 ∆p > 0 00X 00X -0X 00X 00X

E240 ∆p > 0 +0X -0X 00X 00X 00X

E240 m > 0 0+X 0-X 00X 00X 00X

E240 µ∆p > 0 +0X -*X 00X 00X 00X

EY244 stuck open 00X -0Z 00X 00X 00X

FAN416 underspeed 00X 00X 00X -0X -0X

The system is actually not diagnosable based only
on signatures and orderings. First, there are four
pairs of faults that produce exactly the same quanti-
tative behavior on the given measurements: failures in
CB262 and INV2, failures in EY281 and DC485, fail-
ures in EY272 and AC483, and failures in EY275 and
FAN416. This problem cannot be remedied, but the
recovery action is the same for both faults in each pair,
so the ambiguity does not ultimately matter. Second,
offset and intermittent faults produce the same initial
transients, therefore they can only be distinguished by
their quantitative effects. The fault identification mod-
ule can handle that issue. Third, for QED, a sensor
fault affects only a single residual, so when a sensor
fault occurs, we, in theory, have to wait infinitely long
to confirm that no other residuals deviate. For QED-
PC, on the other hand, sensor faults affect many residu-
als, but due to the decoupling introduced by PCs, some
nonsensor faults, e.g., a fault in AC483 (see Table 4)
affect only a single measurement, and we run into the
same issue.

To resolve this third issue, we introduce heuristic
isolation rules based on timing information. We expect
that residuals, if they will deviate, will do so within a
certain time since fault detection. If not, we assume
a 00X signature for that residual, and this allows us
to isolate sensor faults for QED and nonsensor faults
for QED-PC in finite time. For example, for QED we
expect that nonsensor faults will affect multiple resid-
uals within 60 s of fault detection. Note that due to
these diagnosability properties, in general, QED will
be faster at isolating nonsensor faults and QED-PC
will be faster at isolating sensor faults, because these
classes of faults produce many deviations in residuals,
allowing the faults to be quickly isolated.

We also introduce several other heuristic isolation
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rules, most also based on timing information, in or-
der to improve fault isolation times and generally en-
hance diagnosability. For example, for both QED and
QED-PC, fan faults should affect ST516 within 30 s,
and relay/circuit breaker faults should affect their po-
sition sensors within 2 s. Some of these rules are based
on fault identification results, and will be described in
Section 6.

6 FAULT IDENTIFICATION
Fault identification takes the set of faults F produced
by the fault isolation module, and computes the fault
parameters for each fault, producing a new fault set
Fid that includes this information. In some cases, fault
identification may change the fault mode for a fault
based on identification results, so F and Fid do not al-
ways have an exact correspondence. Identification is
initiated immediately after the initial set of fault can-
didates is produced after fault detection. An identifi-
cation routine is run for each fault candidate, which
updates at each time step. Identification terminates for
a given fault candidate when the fault isolation module
determines the candidate is no longer consistent.

The faults that require identification are faults in the
resistances Rac and Rdc, and sensor faults. In addi-
tion, equivalent resistance values are computed for re-
lays EY272 and EY281. For sensor faults of the stuck
profile, the stuck value is simply computed as the most
recent sensor measurement, and the candidate is elim-
inated as soon as two consecutive measurement values
are different. Each of the remaining faults is directly
associated in the model with a parameter change ∆p.

In each case, we have a submodel that computes the
value of ∆p(t) at a given time t based on the sensor
measurements y(t). The resistance value Rdc is com-
puted using the PC for IT281, solved for Rdc. The
resistance value Rac is given by

Rac(t) =
vac(t)√

iac(t)2 −
(

vac(t)
Zfan

sinφ
)2

− vac(t)
Zfan

cosφ

,

where for vac(t) we use
√

2E265, and for iac(t) we
use
√

2IT267. Here, φ is the phase offset introduced
by the fan load, and Zfan is its equivalent impedance.
The nominal values of Zfan and φ were calculated by
solving the following expression at steady state using
two different values Rac and measured values of iac
and vac:

|iac| =
∣∣∣∣ vacZfan

(cosφ+ j sinφ) +
vac
Rac

∣∣∣∣ .
This equation is derived from the complex impedance
expressions for the fan and Rac.

For sensor faults, ∆p(t) is computed as the residual
y(t) − ŷ(t) for output y using the predictive model.
In the case of QED, ŷ(t) is computed using the global
model, but for QED-PC, it is computed using only the
PC that is associated with y.

The time profile of the parameter change ∆p over
[td, t], where t is the current time, may be an offset, a
drift, or an intermittent offset. For the offset profile,
we must identify the magnitude of the offset; for the

drift profile, we must identify the slope; and for the
intermittent profile, we must identify the average time
the parameter value is faulty, the average offset value
during this time period, and the average time the pa-
rameter value is nominal.

The identification procedure keeps the history of
both the predicted nominal values p and the computed
faulty values pf . We compute the fault parameters as
follows:
• For offset faults, we compute the offset simply as

the mean of ∆p = p− pf .
• For drift faults, we compute the slope of ∆p as

(∆p(t2) − ∆p(t1))/(t2 − t1) over three differ-
ent time intervals with (t1, t2) as (td, t), (td, (t+
td)/2), and ((t + td)/2, t) where t is the current
time, and take the median of these values as the
slope, as described in (Daigle and Roychoudhury,
2010). We improve on the robustness of this com-
putation by computing the average value over a
small window of ∆p(t1) and ∆p(t2).
• For intermittent offset faults, we define a limit l

above which ∆p(t) is considered faulty, and be-
low which is considered nominal. The limit l
is typically chosen within 1-2% of the nominal
value of y(t) or p(t). We step through the sig-
nal ∆p(t) to determine the average nominal time
µn, the average faulty time µf , and the average
faulty value µ∆p. The full procedure is described
in (Daigle and Roychoudhury, 2010).

Fault identification is also used to improve fault iso-
lation, either by eliminating candidates whose identifi-
cation results are inconsistent with the supposed candi-
date, e.g., a stuck fault candidate is not actually stuck,
or by changing the fault mode of the candidate to be
consistent with the identification results, e.g., if an off-
set fault looks like a drift fault, then the fault mode
of the candidate will be changed to drift. This type
of change is meant to correct errors in fault isolation
caused by incorrect symbol generation. For example,
a 0+ or 0- signature must be generated in order to hy-
pothesize a drift fault as a candidate, but, for very small
drift faults, the slope may not be able to be confidently
calculated so instead an offset fault is generated. The
identification results are used to correct that error. An-
other example is distinguishing between offset and in-
termittent faults, because they produce the same fault
signatures at the time of fault occurrence.

To generally account for this type of error, for each
fault we identify the parameters for each possible fault
profile, and define tests that determine which fault pro-
file is valid. For example, if µn or µf are less than
0.5, we conclude that the fault is not intermittent. For
slowly developing drift faults on noisy sensors, the
computed value of ∆p can fluctuate above and below
the intermittent threshold l, so the fault may look in-
termittent. So we select three points, as in the compu-
tation of drift, and check that the relative change be-
tween ∆p at these three points is greater than some
threshold (e.g., 15%), and that the absolute differeces
get larger over these three points. If so, the fault is
indeed a drift, and not intermittent.

To determine whether a drift fault is in fact a drift,
we use the same test for checking whether an inter-
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mittent fault is actually a drift fault, only with lower
thresholds. We use lower thresholds because if fault
isolation provided the drift fault candidate, then it is
because a smooth change was detected, and a positive
result on the slope test has high confidence. To deter-
mine whether an offset fault is in fact an offset fault,
we check that both the intermittent and drift tests fail.

7 FAULT RECOVERY
At the end of the scenario, the decision whether to
abort or continue the mission must be made. The fault
identification module computes a candidate set Fid,
with each f ∈ Fid being defined by the component, its
fault mode, and the associated fault parameters. The
oracle is viewed as a function O(f) which, for a given
fault, computes a recommended set of commands C.
For DPI, either C = {abort} or C = ∅.

Each command set has an associated cost. The cost
is zero when the correct command is chosen. If the al-
gorithm recommends abort when the mission should
be continued, the associated cost is that of the mission
(25). If the algorithm recommends to continue when
it should have been aborted, the associated cost is that
of the mission and the vehicle (125). Therefore, we
take the conservative approach and recommend abort
if O(f) = {abort} for at least one f ∈ Fid. In the
case that a fault was detected but all candidates were
eliminated, then one may assume either a false pos-
itive, or a true positive with incorrect fault isolation.
We assume the latter, and in this case, we again take
the conservative route, and recommend an abort.

8 EXPERIMENTAL RESULTS
As an illustrative example, we consider an offset fault
in IT267, with the offset being −1.4 (see Fig. 4). The
fault is injected at 187 s, and QED detects the decrease
in the measured value immediately. The candidate
set is reduced to a failure, resistance offset, resistance
drift, and intermittent resistance offset in AC483; fail-
ures in CB236, CB262, and CB266; failures in EY244,
EY260, EY272, and EY275; failure or underspeed of
FAN416; failure of INV2; and offset, drift, intermit-
tent offset, and stuck faults of IT267. At the next new
measured value of IT267, the IT267 stuck fault is elim-
inated. A fault in CB236 can also be eliminated since
a corresponding change in ISH236 was not observed.
At 192 s, symbol generation determines that IT267 did
not undergo a zero/nonzero transition, eliminating the
remaining circuit breaker faults, a fault in EY260, and
the failure in INV2. At 196.7 s symbol generation de-
termines that the slope on IT267 is 0, eliminating the
resistance drift fault of AC483 and an IT267 drift fault.
At 216.7 s, faults in EY275 and FAN416 are elim-
inated since deviations in ST516 were not observed.
At 220 s, the intermittent faults are eliminated since
the identified parameters are inconsistent, and faults in
AC483 and EY272 are eliminated because a deviation
was not observed in E265, leaving only the offset fault
in IT267. The offset is computed as −1.405, and an
abort is correctly recommended.

QED-PC detects the fault a little later at 187.5 s with
deviations in the PCs for IT267 (decrease) and IT240
(increase). A deviation is detected in IT240 because
the PC computes its output based on the measured
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Figure 4: Selected measured and predicted values for
IT267 offset fault with ∆p = −1.4.

value of IT267, and since the sensor is faulty, the PC
predicts a different value for IT240 than the measured
value. The initial candidate list consists only of faults
in E265, IT267, which is a much smaller candidate
set than that initially generated by QED. At 188.1 s,
a decrease in E265 is detected, leaving only a fault in
IT267 as a candidate. At 230 s, the offset fault mode is
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Figure 5: Selected measured and predicted values for
DC485 drift fault with m = −0.022.

confirmed with the offset computed to be −1.398, and
an abort recommendation is sent.

As a second example, we consider a drift fault in
DC485 (see Fig. 5). The fault is injected at 108.51 s,
with the drift being −0.022. For QED, an increase in
IT281 is detected at 122.8 s, and the initial candidate
list includes faults in AC483, CB262, CB266, DC485,
EY272, EY275, INV2, and IT281. At 132.1 s, an in-
crease in IT240 is detected, eliminating all faults ex-
cept those of DC485. At 132.9 s, the slope for IT281
is computed to be 0, eliminating the resistance drift
fault. At 182.8 s, the intermittent resistance offset fault
is eliminated because the identified parameters are not
consistent with that fault mode, leaving only the resis-
tance offset fault. However, the fault is more consistent
with a drift fault, and therefore the fault mode of the
candidate is changed to a drift. At 230 s the drift fault
is confirmed with the drift computed to be−0.019, and
an abort recommendation is correctly sent.

QED-PC detects the fault at 129.1 s with an increase
in IT281. The initial candidate list consists of faults
in DC485, E281, EY260, and IT281. At 139.1 s, the
slope for IT281 is computed to be a +, eliminating all
fault modes but drift. Also at this time, the fault in

EY260 is eliminated since a deviation in E265 was not
observed. At 189.1 s, the E281 drift fault is elimi-
nated because a deviation in the PC for E281 was not
observed. At 199.1 s, the IT281 drift fault is elimi-
nated since no deviation was detected in any of the PCs
which use it as an input, leaving only the DC485 resis-
tance drift fault (much later than for QED). At 230 s,
the drift is computed as −0.019 and an abort is rec-
ommended.

Table 5 summarizes the performance of QED and
QED-PC in DPI using the evaluation metrics on the
competition data set from DXC’10. The metrics con-
sist of the mean time to detect faults Mfd, the mean
false negative rate Mfn, the mean false positive rate
Mfp, detection accuracyMda, the mean time to isolate
faults Mfi, the number of classification errors Merr,
the mean CPU time Mcpu, the mean peak memory us-
age Mmem, and the overall recovery cost Mrc.

From Table 5, it is clear that both algorithms per-
form better than QED from DXC’10. The previous
version of QED had overly sensitive fault detectors,
which were fine for the training data, but resulted in
many false alarms for the competition data. Further,
the window used for detecting stuck faults was too
small for ST516, and this resulted in some misdiag-
noses that also contributed to the poor performance.
A few errors in the computed signatures were also
present. All these issues were corrected in the new
version of QED, and the model was also improved to
better match the data and further reduce false alarms.

Both QED and QED-PC were tuned such that no
false alarms were detected. This, however, did result
in some missed detections. QED missed a small off-
set fault in IT281 and a small drift fault in ST516.
QED-PC missed these faults as well, in addition to
a small offset fault in ST516, because its detector for
ST516 had to be less sensitive due to the PC having to
model the transients in fan speed. Because of the de-
creased sensitivity, the mean time to detect faults has
increased, but this resulted in overall better isolation
performance. QED-PC has a larger average detection
time due to the decreased sensitivity as described in
Section 4.

Of the experiments, there were 8 expected classi-
fication errors due to faults that could not be distin-
guished, e.g., DC485 failing and its relay failing pro-
duce the same observations. QED had the two missed
detections which resulted in 10 total errors, and QED-
PC had the 3 missed detections in addition to another
case where a fault in E265 could not be eliminated
from consideration from a fan fault. This is because
the relationship of the fan speed on inverter voltage
was not properly modeled, and therefore we could not
drop E265 in that case. This resulted in 12 total classi-
fication errors.

Due to the excellent fault isolation results and sat-
isfactory fault identification, the recommendation was
always correct except in one case. The case where it
was not correct was an intermittent resistance offset
fault in DC485 in which the identified fault param-
eters were slightly off, causing an abort to be rec-
ommended when the correct action was to continue.
For the missed detection cases, the faults were small
enough that the correct action was to continue the mis-
sion, so the correct action was still recommended in
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Table 5: QED Diagnosis Results
DA Mfd (s) Mfn Mfp Mda Mfi (s) Merr Mcpu (ms) Mmem (kb) Mrc

QED (for DXC’10) 7.307 0.015 0.105 0.882 115.499 71.752 239.0 5364 2350

QED (for DXC’11) 12.632 0.015 0.0 0.987 125.996 10.0 116.192 5587 25

QED-PC 17.528 0.023 0.0 0.980 129.334 12.0 120.291 5541 25

those cases.
The CPU times and memory usages did not change

considerably between algorithms or from the previous
version. CPU times are improved over the previous
version of QED, but this is not an entirely fair compar-
ison since the algorithms were run on different com-
puters.

9 CONCLUSIONS
We described our entries into DXC’11, called QED
and QED-PC, which incorporate principles of quali-
tative event-based fault isolation. We improved over
our approach from DXC’10 by improving the mod-
els, decreasing the sensitivity of fault detection, and
making fault identification more robust. Further, the
QED-PC algorithm utilized Possible Conflicts, and we
compared the implementation and performance with
the QED algorithm that uses only a global model.

Overall, diagnosis results were much improved
from the previous competition entry. We found that
with the PC approach, additional modeling was re-
quired and fault detection sensitivity had to be de-
creased. Relative measurement orderings cannot be
used with a purely PC-based approach, however the
decoupling introduced by the PCs enhances diagnos-
ability in its own way. Overall, isolation times were
fairly well-matched, because these were computed
based on the time of the last change to the candi-
date set, and the final decision on what the correct
fault mode is (e.g., intermittent vs. drift) was often
made very late when a large amount of data was avail-
able to declare the correct fault mode with high confi-
dence. Generally, QED-PC was faster at isolating sen-
sor faults, whereas QED was faster at isolating non-
sensor faults, for the reasons explained in Section 5.
Therefore, a new approach that uses residuals from
both the global model and PCs would increase robust-
ness, improve overall diagnosability, and enable many
of the heuristic fault isolation rules to be eliminated.

In the future, we would like to apply these algo-
rithms to Diagnostic Problem II (DPII), which in-
creases the complexity of DPI in several ways. First,
it encompasses the entire ADAPT system. Generally,
this is not a problem for QED or QED-PC, it simply re-
quires modeling the additional components, and both
algorithms scale well with model size. Second, DPII
includes mode changes as part of nominal behavior.
Extensions for QED to hybrid systems are described
in (Daigle, 2008), and recent work applying PCs to
hybrid systems is described in (Bregon et al., 2011).
Third, DPII includes multiple faults. Extensions to
QED for multiple faults are also described in (Daigle,
2008), although fault identification is not addressed.
Handling multiple faults with QED-PC is part of ongo-
ing work. Performing multiple fault diagnosis within

hybrid systems adds another level of complexity that
QED and QED-PC are not yet equipped to handle, but
DPII presents a good case study for further developing
such extensions.
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