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Abstract

Safe, reliable, and efficient operation of complex
dynamical systems requires the ability to detect,
isolate, and identify degradation in system compo-
nents. Degradations are typically modeled as in-
cipient faults, which are slow drifts in system pa-
rameters over time. This paper presents an efficient
approach for the detection, isolation, and identifi-
cation of incipient faults under uncertainty using a
Dynamic Bayesian Network (DBN) approach. Ini-
tially a DBN is used as an observer to track nominal
system behavior. Once a fault is detected, incipi-
ent fault hypotheses are generated using a variation
of our qualitative RANSCENDapproach for abrupt
fault isolation. A modified DBN that includes the
active fault hypotheses is then used to isolate the
true fault and estimate the rate of change in its pa-
rameter value.
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parameter
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Figure 1: Incipient Fault Profile

that have to be included in the DBN model. In our approach,
efficiency is achieved by performing the fault isolation and
identification in two steps: (i) run an efficient qualitatfeilt
isolation scheme to reduce the number of candidate hypothe-
ses to a small number, and (ii) run a refined DBN model to
uniquely isolate the single fault candidate and estimage th
rate of change in its parameter value. The focus of this pa-
per is on fault isolation and identification of incipient fesu
in continuous dynamic systems. We assume that only single,
incipient faults occur in the system. This assumption is re-
quired for the qualitative analysis odlyThe quantitative FlI
framework can handle multiple fault hypotheses.

The paper is organized as follows. Section 2 presents a

Safe, reliable, and efficient operation of complex systemsyaihematical definition of incipient faults and formulates
requires the ability to detect, isolate, and identify delgra  5pr0ach for solving the incipient fault diagnosis problem
tion in system components. Degradations are often modgeciion 3 presents the incipient fault diagnosis architet
eled as incipient faults, which are slow drifts in system pa-yn gives a brief overview of the fault detection, isolaiand
rameter values over time. In our previous work, we havggengification subsystems. The different models emploged f
developed fault diagnosis schemes for abrupt faults, whichyjagnosis are presented in Section 4. Section 5 explains in
are modeled as instantaneous changes in system paramgare detail the algorithms for incipient fault diagnosigcs

ter values at a point in time. The qualitative fault isola- jon 6 presents results of applying this approach to a twk tan

tion (QFI) _scheme is base.d on the analysis (_)f transients i@ystem and conclusions are presented in Section 7.
the dynamic system behavitiviosterman and Biswas, 1999;

Narasimhan and Biswas, 2006; Roychoudhetal., 2005; - . .
Daigle et al, 2008. This approach has to be modified to 2 Incipient Fault Diagnosis
accommodate the temporal profile for incipient faults (seeA complete incipient fault diagnosis scheme must be tailore
Fig. 1). for detection, isolation, and identification (FDII) of ipeent
This paper presents an efficient approach for the diagndfaults. Like earlier work, our diagnosis approach focuses o
sis of incipient faults by combining a variation of th&@An-  parametric component faults. In this framework, the mathe-
SCEND qualitative fault isolation approadMosterman and matical representation of an incipient fault adds a driftnte
Biswas, 1999 with a quantitative fault isolation and identi- to the nominal component parameter value.

fication scheme that employs a Dynamic Bayesian Networlefinition 1 (Incipient fault) An incipient fault profile in a

(DBN) model of the system dynamics. In general, DBN'FIR/namic system is characterized by a gradual drift in the cor
based diagnosis approaches for complex systems suffer fro

computational intractability because of the large numider o 1paigle, Koutsoukos, and Biswas (DX 2006) have developed an
nodes (i.e., system variables and possible fault hypotheseextension of the RANSCENDscheme for multiple fault diagnosis



Epant O wodel - []Procedire hypotheses. This extends our previous work on transieit ana

(Nominal DN} w-rrf TR ) ; ysis of abrupt fault§Mosterman and Biswas, 19p9Unlike
‘ — Ml"]de"ng abrupt faults, which are modeled as-achange in parameter
[Fant] Fauly valug at the point of .faul_t occurrence, incipient faultsa'ﬁh'
T P ™ acterized by slow drifts in parameter values (see Definition

Y
! o i <p.p.> 1), are modeled qualitatively g9, +) change profiles, i.e.,
Observer Faul_l s, Quahlat\vg Fault ‘I Quantitative Fault Isolation N . . .
|_’| Detection l_' Isolation | '—’ there is no change in the faulty parameter value at the point

of fault occurrence but the parameter value slowly increase

] ) ) ) (decreases) over time. This fault profile matches any drift
Figure 2: The diagnosis architecture function d(t) that is monotonic. Given such fault profiles,
the TRANSCEND scheme for qualitative hypothesis genera-

responding component parameter value from the time poinrﬂon and_ refinement can be applieq for quglitative faultasol
of failure occurrence. The temporal profile for an incipient 0N This methodology is outlined in Section 5.3.

and Identification

faultin parameter p, i (t) s given by: 2.3 Quantitative Fault Isolation and Identification
(t) t<t (FIl) using DBNs
= {p e (1) Quantitative Fll is the final step in the fault diagnosis pro-
PEUZ e +dn) t>t

cedure. The RANSCEND scheme discussed in Section 2.2,

added to the parameter value after occurrence of the faultThis makes it feasible to run a quantitative FIl procedure us
i.e. aftert > to. ing a DBN, outlined in Section 5.4, to refine the candidate set

. S ] ) ) and estimate the drift parameter for the true fault candidat
Fig. 1 shows an incipient fault profile, witly as the time
of occurrence of the fault. Since the rate of change of the3  Architecture for Incipient Fault Diagnosis

parameter value is slow compared to the system dynam|c§,he architecture of our model-based diagnosis methodplogy

we can approximate the drift termi{t) = ps(t —to). t > t, resented in Fig. 2, follows a traditional diagnosis schésne
whereps is a constant that defines a linear rate of change, an ontinuous systems. The system, as outlined in Section 2, in
to is the time point at which the incipient fault first occurs. cludes four primary r.nodules: (0 tr’1e observer, (ii) faultate '
; P tor, (i) the qualitative fault isolation unit, and (iv) ¢hDBN-

21 Dete(?tloh of Inc_:lplent Eaults ) ) based FII unit. We build the dynamic plant model in buand
Fault detection is t_he first step in any_dlqgn03|s process. Th raph (BG) modeling languagEKarnoppet al, 2004 using
observer for tracking nominal behavior is based on a DBNg methodology where the components of interest in the sys-
mod_el. This observer-_generated expected behavior of 'E_he SYtem can be identified by one or more bond graph parameters,
tem is compared against the actual measurements using a €uch as source elements, capacitors, inertias, resistande
test for difference in means for robust fault detec{iBiswas  transformers. We derive the temporal causal graph (TCG)
etal,200§. from the BG plant model using techniques that have been de-

Idea”y, deV|at|OnS In measurements Caused by fau|tS angcribed ear"edMosterman and Biswasl 1999 The TCG,
degradations should be detected at or very soon after the poiwhich is an extension of signal flow graphs, includes all the
of fault occurrence. In reality, to accommodate measurémersystem variables as well as the component parameters that de
noise, inaccuracies in the model, and sensitivity of thedet fine dynamic system behavior. The TCG model is explained
tion scheme one has to trade-off false alarm generationsers j, greater detail in Section 4.1.
detection delays. Statistical hypothesis testing schédraks The observer is constructed as a DBN model of the nom-
reduce the false alarm rate, but introduce a delay betweepga| system. DBN tracking accommodates plant model in-
the time of occurrence and detection of faults, it¢.> to.  accuracies and noisy measurements. Its inputs are the plant
This detection delayq —to, may pose convergence problems measurementy,. The DBN is derived from the TCG model
and reduce the parameter estimation accuracy. In our prering the method described finerneret al, 200d, and out-
vious work on qualitative diagnosidanders and Biswas, |ined in Section 4.2. We use standard Bayesian propagation
2003, we have shown that this delay does not affect diagtechniquegRussell and Norvig, 19950 derive estimates of
nosis accuracy. In this approach, we assume this delay e most likely system stat&, and measurement values,
be short enough not to affect qualitative diagnosis and thgs plant behavior evolves. As discussed earlier, incifiarit
DBN-based estimation schemes. To ensure convergence ghrameters change at a very slow rate, which makes the de-
the DBN scheme, we start the estimation process from thesction of changes due to the incipient faults a hard problem

time point at which the fault was detected. since it becomes difficult to separate the measurement-devia
29 litative Fault Isolati tions from measurement noise and discrepancies caused by
2 Qualitative Fault Isolation modeling inaccuracies. We employ statistical methods for

As the first step after fault detection, we employ a qualieati robust fault detection. The input to the Fault Detector are
inference procedure using symbolic deviations and qualitathe plant measurement and the observer-predicted mea-
tive fault signatures for generating and refining possiaidtf  surementsy. A significant difference in the observed and
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(a) The two tank system schematic

made computationally simpler by combining the TCG based

N BN N qualitative fault isolation and the DBN-based Fll procesur

. . As presented ifiLerneret al., 200d, FDII of incipient faults
2 can be achieved by using a single DBN that models both the

Gt - “ g, 6 e nominal as well as all possible faulty behavior of the system
a 7 A 7 However, this makes the number of possible fault hypothe-
3 s ses very large, and an exhaustive online tracking procedure
is not computationally viable. For this reason, the procedu
e - outlined in[Lerneret al,, 2004 involves dropping unlikely

fault candidates to save on computation. It is, therefaos; p

sible that a true fault is dropped early as its probability of

occurrence is very small. Our diagnosis approach retains al

possible faults without compromising on efficiency. This is

Figure 3: The two tank system and its BG model achieved by starting the DBN-based Fll procedure only after

the TCG based hypothesis refinement, thereby reducing the
number of nodes in the DBN.

expected behaviorY —Y) signals a fault occurrence, and

the qualitative residual signaRs generated from the point 4 Modeling

?;f;‘rz]ig:;grentectlomd are used for hypothesis generation andAny model-based diagnosis approach can only be as good as
' ) ) the models that form the core of the diagnosis methodology.
When the fault detector triggers, the DBN observer is susas discussed earlier, component-based BGs form the core of
pended and the RANSCEND procedure is activated. The our modeling framework for physical plants. Efficient magel
qualitative residual signal&s, are used for initial hypothesis  for diagnosis, the TCG, state space models, and the DBNs are
generation, and for hypothesis refinement as additionat megy| derived from the primary BG plant model. This section

surements deviate using qualitative methods. All measuregives a brief summary of the different models that we employ
ments from the time point of failure detection are also céche for incipient fault diagnosis.

for use by the module. The qualitative scheme is terminated
when one of the following conditions becomes true: (i) the4.1 Temporal Causal Graph

number of fault candidates is reduced below a certain NUMA TcG can be described asdiagnosis modethat captures
ber, (i) all measurement deviations have been used, pa(iigependencies (algebraic and temporal) between system vari
pre-specified time horizon is exceeded. The DBN based Fllpjes as a causal structure. The TCG is derived directly from
scheme is then initiated with a DBN model of the faulty sys-ihe pond graph model of the plaiiosterman and Biswas,

tem behavior from the point of detection of the incipientfau 1999. The TCG derived from the BG model can be defined
The set of current fault hypothesésare used to extend the 45 follows.

nominal DBN to the fault DBN for tracking the system behav- .

ior after fault occurrence. Again, standard Bayesian wpdatPefinition 2 (Temporal Causal Graph (TCGR TCG is a
functions are employed, and with additional measurementdirected graph<V,L,D >. V =EUF, where V is a set
the estimates converge to the true observed measuremen.vertices, E is a set of effort variables and F is a set of
At this point’ using least square estimation techniqu%, thﬂOW variables in the bond graph S)./Stem model. L is the label
rate of change of the fault is estimated. The output from thé€t{=,1,—1,p,p~*, pdt, p~*dt} (p is a parameter name of

FIl unit is the fault hypothesis and its rate of change, i.e.the physical system model). The dt specifier indicates a tem-

< p, ps >. The steps outlined above are explained in detail inPoral edge relation, which implies that a vertex affects the
the following sections. derivative of its successor vertex across the temporal .edge

We believe that this approach provides an efficient com-zDo%dV x LxV is a set of edgefNarasimhan and Biswas,
putational scheme for solving the incipient fault diagsosi :
problem in the presence of measurement noise and model Fig. 3(a) shows the schematic of a two tank system that
uncertainty. The Z Test-based fault detection module perwe will use as an example in this paper. The system com-
forms quick and reliable incipient fault detection while@+  prises a couple of interconnected tanks, each having an out-
ing false alarms. The isolation and identification processs iflow pipe for draining the tank. The first tank also has a

(b) The bond graph model of the two tank sys-
tem



source of flow for filling the tank. Fig. 3(b) shows the bond value of 1 implies that the linked parameter has an incipient
graph model. Bonds drawn as half-arrows capture the energyault. A value of 0 implies no fault. This introduces addi-
exchange pathways in the system. Pipes are modeled as t@nal across time linkd)2; — D21, andD12 — D12 ;.
sistances and the tanks are modeled as capacitances. Pipesddition,Z; = {R2,R12}. The set of possible fault hy-
R1 andR2 drain tank<C1 andC2, respectively, and pip@l2  potheses covered by this DBN model include: (i) neitR2r
connects the two tank3l andC2. Fig. 4 shows the TCG for or R12 faulty, (ii) R2 faulty, R12 not faulty, (iii) R2 not faulty,

the two tank system. Temporal relations in the TCG are asR12 faulty, and (iv)R2 andR12 faulty.

sociated with the energy storage elements, i.e., the taxiks. The DBN diagnoser model proposed fiberner et al,
other relations in the TCG, e.g., the pressure-flow relation200d includes all possible faults in the system. However,
imposed by the pipes and the idealized junction relatiores, a the number of possible faults can be really large in complex

algebraic. systems causing complexity issues in tracking diagnostic b
. havior using a Bayesian approach. In our work, we reduce
4.2 The DBN Observer for the Nominal System the set of possible fault hypotheses using taNSCEND

The DBN observer for the nominal system is constructedscheme, and the DBN model for Fll only deals with the ac-
from the TCG, as outlined ifLerneret al, 2004. The DBN tive fault candidates when the qualitative scheme terramat
model is made up of two components: This reduces the size of the DBN diagnoser and it results in a

1. A regular Bayes net that captures the relations betWeeﬁ;]onsiderable improvement in the efficiency of the diagnosis
system variables at any time slite This consists of . ] o
four sets of variable@Q,Zt,Ut,Yt), which represent the 5 Fault Detection, Isolation and ldentification
state variables, other hidden variables, input variables, of |ncipient Faults

nd m red variables for th nami m, an . . . .
and measured variables for the dynamic system, and This section presents the details of our methodology for im-

2. Atwo-slice temporal Bayes net that captures the acrossslementing the different components of incipient faultgdia
time relations defined by the state equation model oingsis scheme.

the dynamic system. We assume that the state equation
model is a discrete-time stochastic process that satisfies,1 Tracking Nominal Behavior Using a DBN

:rrﬁgl{ﬁkzrgzweirrfcz;/nqa;zﬁggggf Ihle;??(;g%itr?ee daé:ros%he DBN observer captures the nominal state of the system
X Y at every time step. The set of node$\; in the DBN and

the system state equations. their distributions provide a snapshot of the system state.
For the two tank system, the DBN derived from the TCG hassubset of these nodeg, correspond to measured variables in
the following variables at timé: X = {e2,e7;}, the pres- the system. The remaining variables belong to the set of sys-
sures at the bottom of tanks 1 and 2, respectitély: {f1;},  tem variables that cannot be measured, XeandZ;. With-
the flow into tank 1, and = {f2, f&, f5}, the outflows out loss of generality, we simplify the subsequent disarssi
from tanks 1 and 2, respectively and the flow between tankby considering only the variable s¥t and ignoringZ;. The
1and 2.Z = ¢, i.e., the two tank dynamic model requires tracking problem for the system observer can be defined as
no additional variables.The across-time model includes fiv deriving the posterior probability(X Yo+ ) at every time step
links, €2 — €211, €7y — €711, €2 — €7i41, €t — €211, t.
and f1; — e2,1. These links are directly derived from the  The first order Markov assumptioreduces the computa-
state space model of the system. Fig 5(a) shows the DBMon of the posterior probability to

observer for time stegsandt + 1.
P(X[Xo1-1) = P(X[X-1). (2)

4.3 The DBN Diagnoser _
. . . Moreover, the state space model of a physical system de-
Model-based diagnosis schemes require the models to repr. fies the system output (i.e., the measured variables) as a

sent both the nominal and faulty system behavior. The DBN,,jon, of the state and the input variables. This implies,
observer derived from the system TCG model represents a

stochastic model of nominal system behavior in Fig. 5(a). P(Y;:|Xot,Yot_1) = P(Y[%). (3)
Tracking of faulty behavior requires a stochastic modet tha o _ )
captures incipient fault effects. The procedure for dagvi ~ BY combining equations (2) and (3), the tracking problem

this DBN is also detailed ifLerneret al, 2004. To capture ~can be defined as an iterative probléRussell and Norvig,
faulty system behavior, two sets of nodes are added. The fird999 defined as

set correspond to parameters that represent the inciieltt f .

hypotheses. The second set are discrete-valued nodesahat a P(%+1[Yot11) = aP(M+1[%11) ; P(Xe11%)P(X[Yor),
in 1-1 correspondence with the fault parameters, and they in
dicate the absence or presence of an incipient fault fopidtat wherea is the normalizing constant. In this work, we as-
rameter. Fig. 5(b) shows the DBN diagnoser for faulty behavsume that all random variables in the system are sampled
ior of the two tank system, assuming two potential fault hy-from normal distributions. The noise models for the mea-
potheses{R2,R12}. In other words, the DBN for faulty be- surements are also assumed to be Gaussian with zero mean
havior now has an extended sgtthat includes{D2;,D12 } (white noise). Therefore, given prior probability distrttons

in addition to{e2;,e7;}. TheD’s are logical variables. A and the measurement noise models, the posterior prolyabilit



Discrete node indicating
Presence/ Absence of
Fault

Node representing
faulty Parameter

Node representing
nominal parameter

(a) The DBN Observer (b) The DBN Diagnoser

Figure 5: The Nominal and Fault DBN Models for the two tankteys

computations are reduced to estimating the mean and varFhe confidence level, defined by, defines the bound

ances of the posterior Gaussian distributions. [z-,z;]: P(z < z< z;) =1—a. This bound can be trans-
The dependencies between the system variables may lbermed to another boung:_, 1. | using Egn. (4), and the ap-

non-linear, as is usually the case for real-life systems. Agroximationo = dy,:

a simplification, tracking of the DBN model can be imple-

mented as afExtended Kalman Filte(EKF) [Bar-Shalom U-=2 —, MUt =24 —.

and Fortmann, 1998which is a classical approach for solv- VR, VR,

ing the tracking problem in such systems. The EKF approxi-The Z-test is employed in the following manner:

mates the nonlinear dynamics with linear dynamics and then

uses the standard Gaussian model to update the system vari- M- < p <y = nofault

ables at the next step. We adapt the EKF mefiNatasimhan otherwise = fault.
and Biswas, 2006for tracking the nominal system behavior.  tpe advantage of this fault detection approach is that it is
5.2 Incipient Fault Detection computationally simpler, and it makes no assumptions con-

erning the properties of the changed mean value (it does not
ave to be constant). Once the fault is detected, the Z-test
outputs symbolically the direction of change of the observa

Yion, based on the value of the mean. If the mean is negative,

?n',ls ?ef;;nJEeel(:lgilr;[heePt?\l: fngtei?g;néﬂesagﬁfm% SES;&'S a this implies that the measurements have decreased from thei
Ply 99 ’ ngminal values, and a symbel is output. If the mean is

30rgrzgigttiecgf::#;e?fﬁér:‘;fg bi:}gnrgeogglt'ggﬂggqr.s V‘:f 38 sitive, the observations have increased from the nominal
P 9 Batys values, and a symbael is output.

against false alarms.
We start by defining a signal deviation at time stefjp 5.3 Qualitative Incipient Fault Isolation

terms of an average residual fo: the Iblgtsamples, i.., After fault detection, the DBN tracking is suspended and the
[ r TRANSCENDfault isolation schemBViosterman and Biswas,
2N i:t%2+l " 1999 is run on the TCG to generate the initial fault hypothe-
es given the first non-zero residual symbol(s). TiraN-

A hypothesis testing scheme based on the Z-test is em: . : X
ployed to establish the significance of the deviation. Te per: CENDdiagnostic framework for abrupt faults is extended to

form the Z-test, the variance of the measurement residui Z'E’/angui)agg%iss 3% gS:;%ei::nSgeﬁ%;perfﬁ'Iles Ii?vzvrg
must be known. (For unknown variance the T-test may b ’ :

performed, but its confidence interval is much larger.) To ap fer?npgﬂgt{ﬁfgggge for generating the initial fault hypothesis

proximate the conditions necessary for the Z-test, the vari .
ance of the signal is. estimated, but from a larger data set coq_CFg r fgcht;Z}J;trnggtggsp:23;?5;;53&,{%Eg\ggrg&sss t%ne the
taining Ny samples, i.e Ny > lt\lz. fault signatures. Propagation of@ +) or a(0,—) will pro-
52, — 1 (r- —u )2 duce no discontinuous changes in the measured variables.
Nat ™ Ny — 1i:t_% 1 PPN Therefore, the predicted first effect of an incipient fauit o
TheZ_value has a distributior;I(O 1): a measurement can b_e expressed as one of th(ee qualitative
RN symbols: {+,0,—}, which corresponds to a predicted grad-
z— K (4)  ual deviation above normal, no change, and a gradual devia-
< tion below normal, respectively, over some time interval. |

The fault detector continually monitors the measuremenﬁ
residualf; = y; — ¥k, wherey; € Y; are the measured variables
at timet, andy; are the expected value of the measurement

£



K A R L cached from the time a fault was detected and the DBN ob-
VIl x| 2] 2| = | 2 server was suspended.
Rz ||+ | - [+ | - | - For the quantitative FIl procedure, we adopt the procedure

. ) detailed in[Lerneret al, 200d. However, the computational

Table 1: Fault Signature Matrix complexity of our approach is greatly reduced because we

start with the pruned set of fault hypotheses obtained from
+ the qualitative TCG analysis. We maintain the belief state
as a set of hypothesis, each of which corresponds to a single
multivariate Gaussian distribution. A random varialpleis
introduced for each hypothesis (each hypothesis is defined
&s a parameter value that has changed), and the distribution
of p; corresponds to the likelihood for that fault hypothesis.
are listed in Table 1. Continued monitoring of the remain-Once the DBN with fault hypotheses is established, the same

ing measurement deviations helps refine the fault hypoghesé@rcedure for updating the likelihood for the nominal DBN
using a matching process. If the observed deviation signdfa" P€ applied to adjust the weights and the parameters of the
matches the predicted signature value, the fault hypathiesi multivariate Gaussians as each hypothesis is conditioned o

retained, otherwise it is dropped. thinew measureme_mﬁl. lected. th e for th
The qualitative fault isolation algorithm is designed ta ru S more observations are collected, the mean value for the

for at mosts steps, whers is a pre-specified value. It may true fault parameter changes gradually, whereas the méans o
turn out that a single fault is isolated before theteps are (he other non-faulty parameters do not change. Moreower, th
complete, or multiple hypotheses may still be valid after th Variances of each distribution should gradually decrease a
ssteps. When qualitative isolation identifies a unique candiMCre measurements are obtained. Observing the sequence of
date or thes steps are completed, the TCG based scheme 162N, We can calculate the rate of change of the true fault pa

terminated and the FIl module with the DBN diagnoser is ini-ameter, thereby fulilling the identification task for ip@nt
tiated. The number of stesmust be carefully chosen. # faults. If at the end of the qualitative analysis, the setodtf

is too small, it is very likely that few fault candidates wie ~ NYPOtheses is refined to a singleton set containing only one
dropped and the ensuing DBN-based FiI procedure will nofult: itimplies that the system is diagnosable using thel-qu

be efficient. On the other hand, sfis large we may delay itative diagnoser. In that case, we add only one fault mode to
the isolation and identification tasks. A small number of re-the DBN-based diagnoser and the diagnoser is used solely for

maining fault candidates implies a few “fault nodes” have to€Stimating the slope of the fault parameter.
be introduced into the DBN diagnoser. This is good because
the DBN approach is exponential in the number of number o6  Results
fault hypotheses that are introduced. Too many hypotheses ., . : . .
increase computation time and also the time to convergencs.n this section, we present the results obtained by appljieg
proposed diagnosis approach to the two tank system shown in
. e L . Fig. 3(a). In such hydraulic systems, the accumulation df se
5.4 Fault Isolatlon and Iden'glflcatlon of Incipient iment in the pipes are common examples of incipient faults.
Faults Using the DBN Diagnoser These incipient faults are modeled as a gradual increase in
Once the TCG based procedure completes runningdteps  the pipe resistances and represente®Es R2" andR12*.
(or less thars steps if fault isolation completes earlier), the f3, f5, andf8, the flow through the pipeR1, R12 andRz2,
DBN diagnoser is modified to model the remaining fault hy-respectively, are the measured variables for this expetime
potheses and the DBN-based FIl scheme is initiated. System behavior was generated for a total of 500 time steps
We implement a single DBN that includes all of the cur- by simulation using the Simulifk’MATLAB ® environment.
rent fault hypotheses, i.e., the fault hypotheses that ate n White noise (mean = 0, variance = 2% of the measured sig-
eliminated by the RANSCENDanalysis. Consider a specific nal) was added to the measurements. The measurements were
scenario, where the RANSCEND scheme reduces the fault saved in a file, and then run through our incipient fault di-
hypothesis set tfR2,R12}. As discussed this introduces agnosis scheme (implemented in MATLAB) to generate our
four additional nodes into the system DBN, i|82,R12,D2,  experimental results.
andD12. The set of possible fault hypotheses covered by the We now describe a run of our diagnosis approach for a spe-
DBN model of the faulty system include: (i) neithB2 or  cific fault scenario. An incipient fault, i.e., a gradual lowip
R12 faulty, (ii) R2 faulty, R12 not faulty, (iii) R2 faulty, R12  of resistance was introduced in piR&2 at time-steg,= 200.
not faulty, and (iv)R2 andR12 faulty. We assume that we The fault was modeled by a linear increase inffi€ param-
have enough measurements such that the system, even wéter at rate of @014 per time unit.
the addition of the faulty modes, is observable. The DBN The introduction of the faulR12" first resulted in an de-
FIl scheme is initialized to the state of the system at tigye  crease from nominal fof5, i.e., f5 = —. The fault detector
when the fault was detected (see Section 2.1). This is becauZ-test signaled this deviation at time steg- 219, and then
tqg —to is assumed to be small and error in starting the DBN-detected a increase from nominal in the measured value for
based FIl scheme &3 instead oft, is negligible for the our 3, i.e.,f3 =+, and then an decrease from nominal f&,
diagnosis approach. Recall that all observations have bedre., f8 = — at time steps 266 and 371, respectively. This is

[Manderset al., 2004 we have established that only the firs
change in a measured signal provides information to differe
tiate among fault hypotheses, therefore, it is sufficientisb
record this first changet as the fault signature. The fault
signatures for buildup of sediments in the three pipes of th
two tank system (Fig. 3), causing their resistances to asze



shown in Fig. 6, where the flows after the introduction of the| 7ut | Rate | Timeof [ Timeof | Time [ Tmeof [ Estmated

fault are compared with the ﬂo_vv values estimated_by t_he ob- fault | injection | detection| QFI Fil fault

server. The forward propagation along the TCG implicated S{ 8883; ggg ggg ggg igg 8»88331
-+ . B o . .

R2* andR12" as the possible fault candidates. The fault 55 | ooota | 200 519 371 477 0.00138

signatures, shown in Table 1 were used to match against the

symbolic value of the measured variables. In this particulaTable 2: Experimental results (all times are expressedras ti

experiment, at the end of the TCG based analyR®s, and  steps from the start of the experiment)
R12" remained as fault candidates as the deviations observed

in f3 andf5 could not refute the possibility of either fault.

The DBN-based diagnoser, representing the fault modegye fault. Similar plots for the flows f5 and f8 are shown in
R2* and R12*, was appropriately initialized and restarted Fig. 6(b) and Fig. 6(c). Table 2 summarizes the results for

from the time of detection of the fault, i.e.= 219. Allran-  experiments wherRL* andR2* are introduced as faults one
dom variables in the DBN are assumed to be sampled fromy one.

normal distributions with meam, and varianceosp. The
means of every parameter is updated across time steps as fol-

lows: 7 Conclusions
[ P ]:{ el ) 1,L@+L) H b ]+[ g ]s( In this paper, we presented an efficient approach for diagno-
1 CaR12 G2ir TR ! sis of incipient faults using a combined qualitative andrgua
Hig,q 1 g9 titative DBN-based estimation scheme. The DBN-based FlI
{ Hisy s } = { s } { ﬁ:j } approach allows for robust diagnosis under uncertainty tha
Mg 0 ® ' can be attributed to measurement noise and modeling errors.
Hedyyq ey However, for large practical systems, the DBN based ap-
Hrizyy | _ Hig g proach becomes computationally very expensive. To address
Ure, Heri 1 .. . . . .
t+ Higy this issue, in our approach, the fault hypotheses is firstedfi

) ~__ toasmaller set of candidates using qualitative fault ismfa
At every step, the mean and variance of the distributiongspproaches. The DBN is then built for this reduced number

of each parameter is updated and the estimated observatiopsfault hypotheses alone making it more efficient than one
are compared with the actual faulty behavior. As the estiwnhich contains all possible fault hypotheses.

mates are conditioned on more evidence, i.e., measurements

i - One issue that needs further investigation is the obsdrvabi
the estimation of the true fault parameter should resultéa p 9

dicted behavior models that match the measured system vaﬁ%’n(;ﬁéh?n?ﬁgl t\(,j\,'g%;?ses;g?edn']tssr'g&?lcitnogig_l%g?ﬁi'ih;ﬁ;;ﬁ{

ables,. while the estimates obtained from the “Oth.ef". hypeth to measure the presswé and the flowf 3 to uniquely isolate

ses will produce estimates that imply no change in its param, ¢, ¢t hynotheses (Table 1). However, for quantitatilte F
eter value, or the estimated change has a very low I|keI|hoo§TWm be necessary to measure all three f’Iows £5.and 8

given the measurements. Thg Z-test descrlbed_earller IS 8 order to estimate the appropriate resistance valuescht ea
plied to the measured flow estimates corresponding to each gfo sten The problem of identifying the correct set of mea-
the four hypotheses to determine if there is a significant deéurements such that the system is diagnosable as well as the

viation from the observed faulty measurements. If the Z-tesppN is observable. therefore. is an interesting reseagtfeis
determines a deviation in the residual for a certain hymithe ' '

that particular hypothesis is no longer considered to bielval _ N OUr éxperiments, we assumed that the prior and condi-
In this way, att — 477, the deviation in estimates fB2* tional probabilities for the DBN are all Gaussian. Moregver

is established using the Z-test, aRi2" is correctly isolated e parameters of the DBN were also assumed to have a Gaus-
as the true fault. The means of the distribution Rir2 at sian distribution. However, this is a rather Strong asswnpt
each time step from= 219 is logged and using standard least2"d We need to relax it and demonsrate the efficiency of our
square estimation, the slope of change is identified. Ttee ratli2gnosis scheme for more general systems.

of change of the faulty parameter was identified to I89038 Finally, even though the qualitative fault isolation prece
which is close to the actual injected rate 00014 with a  dure is designed for diagnosis of single faults, the DBN #ase
percentage error of 1.43%. Fll approach has no such restrictions. Hence, a naturahexte

Fig. 6(a) shows the plots for (i) the estimated nominal flowsion of this work would be to adapt it for the detection of
f3 estimated by the observer, (i) the measured actual flow fanultiple incipient faults. In future, we intend to also exte
with the fault injected at = 200, (iii) the estimated flow f3 this Bayesian approach to the diagnosis of both incipiedt an
with R2* as the only fault hypothesis, and, (iv) the estimatedabrupt faults.
flow f3 with R12" as the only fault hypothesis. As the true
faultisR12", we can see that the estimated flow f3 wRt2™
as the only hypothesis converges to the observed flow wherAcknowledgement
as the estimates of f3 witR2" as the only hypothesis do
not. Thus the Z-test detects a deviation R#" and hence This work was supported in part by NSF CNS-0452067 and
it is dropped as the fault hypothesis, isolatiRfj2t as the NSF CNS-0347440.
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