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Abstract— Model-based diagnosis for industrial applications
have to be efficient, and deal with modeling approximations and
measurement noise. This paper presents a distributed diagnosis
scheme, based on Dynamic Bayesian Networks (DBNs) that gen-
erates globally correct diagnosis results through local analysis,
by only communicating a minimal number of measurements
among diagnosers. We demonstrate experimentally that our
distributed diagnosis scheme is computationally more efficient
than its centralized counterpart, and it does not compromise
the accuracy of the diagnosis results.

I. INTRODUCTION

Online diagnosis schemes designed to ensure the safe
and efficient operation of real-world engineering systems
must be robust to uncertainties; efficient in their memory
and computational requirements; scale well to changes in
system configurations; and not suffer from single points
of failure. Most centralized model-based diagnosis schemes
suffer from some of these shortcomings, but distributed
diagnsosis schemes can address these drawbacks [1]–[3].

This paper presents a distributed scheme for diagnosing
parametric faults in complex physical systems operating in
uncertain environments using Dynamic Bayesian Networks
(DBNs) [4]–[6]. Our distributed diagnosis scheme does not
use a centralized coordinator, and each local diagnoser
generates globally correct diagnosis results through local
analysis, by only communicating a minimal number of
measurements with other local diagnosers. The diagnoser
design is based on factoring the bond graph (BG) model
of the system into multiple independent, structurally ob-
servable, bond graph factors (BG-Fs) that are systematically
converted into diagnosis models, i.e., DBN-Factors (DBN-
Fs), used by the local diagnosers. Random variables in a
DBN-F are guaranteed to be conditionally independent of
the random variables in all other DBN-Fs given the chosen
subset of communicated measurements considered as system
inputs. We leverage this conditional independence among
the DBN-F variables to derive separate particle filter (PF)-
based inference algorithms [7] for fault detection, isolation,
and identification. This quantitative diagnosis scheme is
employed in combination with a qualitative fault isolation
scheme to improve diagnosis efficiency.

In the remainder of this paper, we present our distributed
diagnosis scheme, prove that our local diagnosers generate
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globally correct diagnosis results through local analysis
without a centralized coordinator, and demonstrate experi-
mentally using an electrical power system case study that
our distributed diagnosis scheme is computationally more ef-
ficient than its centralized counterpart without compromising
the accuracy of the diagnosis results.

II. MODELING FOR DIAGNOSIS

Our approach requires two diagnosis models: (1) temporal
causal graphs (TCGs) for qualitative fault isolation [8], and
(2) DBNs for fault detection and identification [6]. Both
models are systematically derived from the system BG model
[9].

A. Bond Graphs

BGs are parametric, topological models that capture en-
ergy exchange pathways in physical processes. The generic
BG-elements are energy storage (C and I), dissipation (R),
transformation (GY and T F), source (Se and S f ), and detec-
tion (De and D f ) elements. The connecting edges, called
bonds, represent energy pathways between the elements.
Each bond has an associated effort, e, and flow, f , variable,
such that their product defines the power transferred through
the bond. 0- and 1-junctions represent equal-effort and equal-
flow connections, respectively. Fig. 1(b) shows the BG of a
twelfth-order electrical circuit shown in Fig. 1(a). For every C
element in integral causality, the corresponding state variable
is the displacement variable, q, such that q̇ = f . Similarly for
every I element in integral causality, the corresponding state
variable is the momentum variable, p, such that ṗ = e.

Faults are defined as changes in the nominal BG parameter
values [6]. An incipient fault is a slow change in BG
parameter, p (with nominal parameter value function, p(t)),
and modeled as p±i(t) = p(t)±∆i

p · (t− t f ), t > t f ,where t f is
the time of fault occurrence, p±i(t) is the temporal profile
of parameter p with an incipient fault, and ∆i

p is a constant
slope. An abrupt fault is modeled as an addition of a constant
persistent bias term, ∆a

p · p(t), to the nominal parameter value,
p(t), i.e., p±a(t) = p(t)±∆a

p · p(t), t > t f ,where t f is the time
of fault occurrence, ∆a

p is the percentage change in the
parameter expressed as a fraction, and p±a(t) is the temporal
profile of parameter p with an abrupt fault.

B. Temporal Causal Graph

TCGs are graphs that capture the causal and temporal
relations between system variables, through directed edges
and their labels. The direction of a TCG edge and its label
are based on causality, which establishes the cause and



(a) Schematic.

(b) Bond graph.

(c) Two-Factored bond graph with imposed derivative
causality.

(d) Dynamic Bayesian Net-
work.

(e) Two-Factored Dynamic
Bayesian Network.

Fig. 1. Models of the twelfth-order electrical system.

effect relationships between the e and f variables of a bond
based on constraints imposed by the incident BG elements.
As shown in [8], algorithms that use the sequential causal
assignment procedure (SCAP) to assign the causality in a
BG [9] can be used to generate a TCG from a BG.

C. Dynamic Bayesian Network

A DBN is defined as D=(X,U,Y), where X, U, and Y are
sets of stochastic random variables that denote (hidden) state
variables, system input variables, and measured variables in
the dynamic system, respectively [4]. Graphically, a DBN
is a two-slice Bayesian network, representing a snapshot
of system behavior in two consecutive time slices, t and

t + 1. Each DBN time-slice represents the Markov process
observation model, P(Yt |Xt ,Ut), while the across-time links
represent the Markov state-transition model, P(Xt+1|Xt ,Ut).
The system DBN is constructed from its TCG in integral
causality using the method given in [5]. Fig. 1(d) shows
the DBN for our example circuit, where thick-lined circles
denote state variables, thin-lined circles denote observed
variables, and squares denote input variables.

III. THE DISTRIBUTED DIAGNOSIS APPROACH

Decentralized diagnosis schemes can be broadly classified
into three protocols presented in [2], where each local
diagnoser is built from the global system model and uses
only a subset of observable events. Our approach, similar
to the third protocol, generates correct results without a
coordinator. But, unlike the approach presented by [1], each
individual local diagnoser needs to communicate only the
minimal number of measurements, and not diagnosis results,
from other diagnosers to generate globally correct diagnosis
results.

In our distributed diagnosis approach (Fig. 2), we fac-
tor a BG into structurally observable BG-Fs, and build a
local diagnoser off the DBN-F and TCG-Factor (TCG-F)
derived from each BG-F. Each local diagnoser performs three
primary tasks [6]: (i) fault detection, (ii) qualitative fault
isolation (Qual-FI), and (iii) quantitative fault hypothesis
refinement and identification (Quant-FHRI).

A fault is detected when the residual, i.e., the difference
between the observed (faulty) and estimated (nominal) values
of a measurement, is determined to be statistically signifi-
cant [10]. A PF scheme [7] implements the nominal observer
for each DBN-F diagnoser. Fault detection triggers Qual-FI,
which starts with a hypotheses generation, where all possible
parameter changes that can explain the observed deviation
are generated. The fault hypotheses are refined by comparing
the fault signatures of the fault hypotheses, and removing
from consideration, the fault hypotheses inconsistent with
the observed deviations. Fault signatures are generated from
the system TCG-F.

The Quant-FHRI scheme is invoked when either the fault
hypotheses set is refined to a pre-defined size, k, a design
parameter, or a pre-specified s simulation timesteps have
elapsed. For each fault hypothesis that remains when Quant-
FHRI is initiated, a faulty system model is generated by
extending the nominal DBN-F to include the fault param-
eter as a stochastic variable in the DBN-F [6]. Again, a
PF scheme for each DBN-F fault model tracks the faulty
observed behavior, taking as input the measurements from
time td −∆max

t , where ∆max
t ≥ td − t f is the maximum delay

possible between the time of fault occurrence, t f , and the
time of fault detection, td . For each PF, a Z-test is used to
determine if the deviation of a measurement estimated by the
PF from the corresponding actual observation is statistically
significant. As more observations are obtained, ideally the
PF using the correct fault model will eventually converge to
the observed measurements, while the observations estimated
using the incorrect fault models would gradually deviate from



Fig. 2. The distributed diagnosis architecture.

the observed measurements. We assume that the particles
for the true fault model will converge to the observed
measurements within sd time steps of its invocation. Since
the fault magnitude is included as a stochastic variable in
every fault model, the magnitude of the true fault (i.e., the %
bias, ∆a

p, or, the slope, ∆i
p) is considered to be that estimated

by the PF for the true fault model.
We start tracking faulty data from time td−∆max

t because
once the fault has occurred, and till the magnitude of the
fault is correctly identified, the system model is unknown.
Tracking the observed measurements from before the oc-
currence of fault in the system is beneficial in terms of
setting the initial state vector values. However, this implies
that the process noise for each state variable must be set
to a large enough value to avoid the “particle attrition”
or “weight degeneracy” problem [11]. But having a large
constant standard deviation would result in a large variance
in estimated values. Fig. 3 illustrates our approach of using
a standard deviation that varies linearly between σmax

p and
σmin

p around the approximate time of fault occurrence. The
heuristic for determining σmax

p and σmin
p are as follows: We

assume a symmetric scale for fault magnitude increase and
decreases, and assign σmax

p ≥P/3, where P is the nominal
value of parameter p for a p−a fault. The denominator 3 is
based on normal distribution characteristics: 99.7% of the
values in a normal distribution lies within three standard
deviations of the mean. For a p−i fault, we assign σmin

p ≥
P∆t/3, where ∆t is the time difference between two slices
of the DBN. For p+a and p+i faults, we assume the max
possible values for ∆a

p and ∆i
p are denoted by ∆a

pmax and
∆i

pmax , respectively. So, for a p+a fault, σmax
p ≥ ∆a

pmax/3, and
for a p+i fault, σmax

p ≥ ∆i
pmax ∆t/3. Once σmax

p values have
been determined, we usually set σmin

p = σmax
p /10. Note that

in the incipient fault model, it is the noise that accounts for
generating particles in the vicinity of the true parameter value
at each time step. Hence, we must be careful to ensure that
σmin

p is not smaller than the actual ∆i
p ·∆t for that parameter.

IV. DESIGNING THE LOCAL DIAGNOSERS

The objective of our distributed diagnosis scheme is to
generate globally correct diagnosis results without a central-
ized coordinator, and by communicating a minimal number
of measurements between diagnosers. We achieve this objec-
tive by first factoring the system BG into maximal number
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Fig. 3. Profile of standard for our particle filtering-based fault identification.

of structurally observable [12] BG-Fs, and then generating a
TCG-F and a DBN-F for each BG-F. The detailed procedure
for generating the local diagnosers appears in [13].

The factoring approach identifies the system state variables
that can be computed as algebraic functions of a subset of
sensor measurements, and replaces these state variables by
the algebraic functions. As the values of these state variables
can now be computed at every time step, the dependence of
across time relations between some of the state variables
are removed, which decouples the computational model for
each factor given the sensor measurements. Therefore, the
inference algorithms for each factor are independent of
the algorithms for other factors, facilitating our distributed
diagnosis scheme.

Factoring BGs, therefore, corresponds to replacing energy-
storage I and C elements by modulated sources of flow or
effort, respectively, with the modulation factors computed
as algebraic functions of observed measurements. Fig. 1(b)
shows complete BG of the electrical circuit. The available
measurements in this circuit are current values, i1, i2, . . . , i4
and voltages v1,v2, . . . ,v6. Fig. 1(c) shows the two BG-Fs
that the global BG is factored into. The current through the
inductor L5 is equal to v3/R3. Hence, we can replace f35
in Fig. 1(b) with modulated MS f = v3/R3 creating the two
independent factors. If one or more of the resultant BG-Fs are
structurally unobservable, they are merged with other BG-Fs
till all of the BG-Fs are structurally observable.

In the maximal number of structurally observable BG-
F configuration, each BG-F is converted into a DBN-
F. By construction, the random variables in each DBN-F
are conditionally independent from those in other DBN-
Fs given the subset of measurements now considered as



system inputs. Because our DBN-Fs are generated from
structurally observable BG-Fs, our factored inference scheme
generates accurate inference results. Fig. 1(e) shows the
DBN-Fs corresponding to the two BG-Fs in Fig. 1(c). Note
that in the DBN-Fs, the state variable p35 is replaced by
the input v3L5/R3. Since, v3/R3 can be measured at every
time step, all causal links directed into p35 are removed.
As a result, given v3L5/R3, every variable in one DBN-F
is conditionally independent of the variables in the other
DBN-F. Thus, the two generated DBN-Fs are conditionally
independent. In the factored DBN, we do not replace state
variables, such as, p2 with i1L1, since this replacement does
not yield any additional factors in Fig. 1(e). Moreover, we do
not replace state variables p10 and q29 with i2L3 and v5C4,
respectively, since we assume that inductor L3, and capacitor
C4 can become faulty. We can see that the DBN-Fs shown
in Fig. 1(e) map to the BG-Fs shown in Fig. 1(c).

Once we generate m DBN-Fs, D1, D2, . . . Dm, from
m structurally-observable BG-Fs, B1,B2, . . . ,Bm, a local di-
agnoser, Di, is constructed based off the DBN-F Di and
the TCG-F derived from each BG-F, Bi. Our distributed
diagnosis approach (presented in the previous section) can
be implemented by each Di, independent of the other diag-
nosers.

V. IMPLEMENTING THE LOCAL DIAGNOSERS

Each local diagnoser, Di, receives the input signals Ui,
and the observed measurements Yi from the system since it
is based off DBN-F, Di. Note that a diagnoser Di’s inputs
Ui may include some of the inputs to the global system, i.e.,
Ui∩U 6=∅, as well as some measurements now considered
inputs, i.e., Ui∩Y 6=∅. Each Di implements an independent
PF-based observer on nominal DBN-F Di for fault detection
in Qual-FI; uses the TCG-F for hypothesis generation and
refinement; and PFs applied to faulty DBN-Fs generated
by extending Di with faulty parameters as additional state
variables for tracking faulty system behavior in Qual-FHRI.

Each of these PFs takes as inputs, Ui, and estimates Xi
based on Yi. Only measurements (∪iUi)−U are shared
between the PF-based observers for each Di. Further, the
PF for the DBN-F Di is designed to use a |Xi|

|X| particles,
where a is a user-specified parameter. Given m DBN-Fs,
we know that ∑i |Xi|< |X|, where X is the total number of
state states in the complete system. Therefore, the complexity
of tracking using each DBN-F is less that that of tracking
using the global DBN. Also, since the inference algorithms
on the different factors are executed simultaneously, the
total complexity of inference reduces to the complexity of
inference of the PF with the maximum number of particles.
The reduction of complexity is based on the assumptions that
the sensors associated with measurements used to modulate
the sources of energy in BG-Fs will not be faulty, and
the components whose parameters are used in the algebraic
functions are assumed not to fail. Therefore, there is a trade-
off for robustness to gain efficiency.

Our local diagnosers are guaranteed to generate globally
correct results through local analysis, without a centralized

TABLE I
FAULT SIGNATURES FOR LOCAL DIAGNOSERS D1 AND D2

Diagnoser D1
Fault i1 i2 i3 v1 v2

C−a
2 , C−i

2 , R+a
2 , R+i

2 0−0− 0− 0+ 0+
L−a

2 0+0− 0−−+−+
L−i

2 0+0− 0− 0− 0−
L−a

3 0++−+−−∗−+
L−i

3 0+0+ 0+ 0− 0−
L−a

4 0+0+−+0− 0−
L−i

4 0+0+ 0− 0− 0−

Diagnoser D2
Fault i4 v4 v5 v6

C−a
3 , R+a

4 0++−0+ 0+
C−i

3 , R+i
4 0+ 0+ 0+ 0+

C−a
4 0− 0++−+−

C−i
4 , R+a

6 , R+i
6 0− 0+ 0+ 0+

L−a
7 −+0− 0− −∗

L−i
7 0− 0− 0− 0−

R+a
7 0− 0+ 0−+−

R+i
7 0− 0+ 0− 0+

coordinator. By construction, a fault, φ ∈ Fj, is only detected
by diagnoser D j. All other diagnosers, Dk, k 6= j, will not
detect the fault hence, they are not activated. In general, say
the observer in diagnoser Di uses the state space equations
X̂it+1 = Gi(Xit ,Uit ), and Ŷit = Hi(Xit ,Uit ). Two diagnosers
D j, Dk communicate a measurement Y ∈ Y if Y ∈ U j ∧Y ∈
Uk, i.e., measurement Y is an input to both D j and Dk. A fault
in BG-F, Bk implies that functions Gk and Hk do not correctly
represent the actual system any more. As a result, Ŷk 6≈ Yk,
and a fault is eventually detected by Dk. The effects of a fault
in Bk can propagate to another BG-F B j, j 6= k, through their
shared inputs, (U j ∩Uk)−U, iff Bk and B j communicate at
least one measurement, but, since we adopt the single-fault
assumption, and since by construction, two BG-Fs can never
share any parameters, the state space representations G j and
H j of all other BG-Fs, B j, j 6= k, will correctly represent
the actual system dynamics of each BG-F. Hence, Ŷ j ≈ Y j,
i.e., the observers in other diagnosers will correctly track
the faulty measurement, and hence no fault will be detected.
Consequently, the diagnoser does not get activated unless a
fault is detected.

VI. EXPERIMENTAL RESULTS

This section presents experimental results of applying our
distributed diagnosis scheme on the electrical system shown
in Fig. 1(a). Two local diagnosers, D1 and D2 are designed
for this electrical circuit, for the top and bottom DBN-
Fs shown in Fig. 1(e). The two diagnosers communicate
voltage measurement v3 between each other. Table I shows
the possible faults that must be diagnosed by each of the two
diagnosers, and the fault signatures for each fault, given the
measurements available to each diagnoser.

We present an experimental run for diagnosing an abrupt
fault in C2, C−a

2 , with ∆a
C2

= −0.9, introduced at time,
t = 100 s. A negative deviation is noticed in measure-
ment i3 at t = 101.4 s, which result in the fault hypothe-
ses set, {C−i

2 ,C−a
2 ,R+a

2 ,R+i
2 ,L−i

2 ,L−a
2 ,L−i

4 ,L−a
4 }. Subequent

changes in i3 and v2 the fault hypotheses are refined to
{C−i

2 ,C−a
2 ,R+a

2 ,R+i
2 } using the fault signatures in Table I.

Qual-FI can produce no further refinements so Quant-FHRI
is initiated. As shown in Fig. 4, the second diagnoser
does not detect any fault. We start tracking the observed
measurements from time t = 97.5 s, and instantiate two PFs,
one using a DBN-F model for fault C−i

2 /C−a
2 , and the other

using a DBN-F model for fault R+i
2 /R+a

2 , with parameters C2
and R2 introduced as additional state variables in the nominal
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Fig. 4. Tracking observations in the presence of C−a
2 fault by diagnoser

D2.

system DBN-Fs shown in Fig. 1(e). Figs. 5(a) and 5(b)
show the DBN-F fault models for C−i

2 /C−a
2 and R+i

2 /R+a
2 ,

respectively.
Fig. 6 shows the sum of mean squared estimation errors

obtained using the two different fault models. For abrupt
faults, at the time the fault is introduced, the abrupt fault
parameter value is unknown. Hence, it takes some time for
the correct fault model estimates to converge to the observed
measurements, as we can see in the error plots obtained by
the first fault model. A statistical test is employed on the sum
of estimation errors across all the measurements to detect sta-
tistically significant sum of mean squared estimation errors.
This statistical test detects a statistically significant sum of
mean squared estimation error obtained by both the DBN-F
fault models at times t = 101.3 s and t = 101.9 s, respectively.
However, the sum of mean squared estimation errors from
the R2 DBN fault model do not converge even after sd =
150 s, whereas, the sum of mean squared estimation errors
from the C2 DBN fault model converges to the observed
measurements from t = 105.0 s. Hence the true fault is
isolated to be C±a

2 /C±i
2 fault at t = 251.3 s. In order to

determine whether the fault is an abrupt or incipient fault in
C2, we run a window-based Z-test on the difference between
the known nominal parameter value and the estimated state
variable. At t = 171.7 s, the statistical test shows that the
estimated parameter evolves in a (−0) manner, implying it
is an abrupt fault, and that it converges. By taking a mean of
the values for 20 time steps after the abrupt fault is isolated,
we obtain ∆a

C2
=−0.897. The actual value of ∆a

C2
is −0.900.

Thus, there is a 0.33% error in estimating ∆a
C2

. The estimate
for the faulty parameter is shown in Fig. 6(c). Notice the
initial set of fault hypotheses generated in the distributed
scheme is smaller than that generated in the centralized
approach for the same fault experiment.

Table II summarizes the results of different distributed and
centralized diagnosis experiments we ran on the electrical
circuit example. For each experiment, we conducted 5 runs,
and took the average of the time to fault detection, time to
single fault isolation, time for the estimated parameter value
to convergence to the true value, and the percentage error
in the estimates of the true fault parameter. On comparing

(a) DBN-F Fault model for
C−a

2 /C−i
2 .

(b) DBN-F Fault model for
R+a

2 /R+i
2 .

Fig. 5. DBN-F Fault models for distributed diagnosis experiments.

100 110 120 130 140

500

1000

1500

2000

2500

Time (s)

Sum of Squared Error

(a) Sum of mean
squared estimation
errors obtained by C2
DBN fault models.

100 110 120 130 140

1

2

3

4

5

x 10
11

Time (s)

 

Sum of Squared Error

(b) Sum of mean
squared estimation
errors obtained by R2
DBN fault models.

100 110 120 130 140

50

100

150

200

250

Time (s)

Fa
ra

ds
 (

F)

Estimated C
2
 parameter

 

 
Actual
Estimated

(c) Estimate of C2 ob-
tained using the C2 DBN-
F fault model.

Fig. 6. Quant-FHRI using C2 and R2 DBN-F fault models.

the results obtained from the centralized and distributed
Bayesian diagnosis experiments, we observe that the compu-
tational expense of the local diagnosers is less than that of the
centralized diagnosers, since if each local diagnoser is im-
plemented on a separate process, the worst case efficiency of
our distributed diagnosis scheme is determined by the largest
DBN-F fault model used for tracking faulty measurements,
and, by construction, the largest DBN-F will still be smaller
than the global DBN.

Also, compared to the centralized diagnosis approach, the
distributed diagnosis approach results in comparable param-
eter estimation errors to the centralized diagnosis approach.
In addition, the parameter estimates made by the distributed
approach took longer to converge in terms of the number
of measurement points required than the centralized scheme.
We attribute this difference to the proportional distribution
of particles based on the size of each factor, keeping the sum
total of particles used by all the PFs the same. Moreover, the
use of a noisy sensor to compute the value of a state variable
also contributed to this degraded accuracy. The centralized
diagnosis scheme has access to more sensors and the state-
estimates are not as noisy as those computed in terms of
measurements in the distributed scheme. If the individual
local diagnosers are executed on different processors, then
we can increase the number of particles for each diagnoser,
and our intuition is that this will improve the estimation
accuracy and identification time of the local diagnosers.
Thus, our experimental results on the twelfth-order electrical



TABLE II
RESULTS OF DIAGNOSIS EXPERIMENTS ON THE TWELFTH-ORDER

ELECTRICAL CIRCUIT

Distributed Diagnosis with Particles Used Proportional to
the Total Number of States Per Factor

Fault Magnitude Detection Isolation Conv. % Mean Param.
Time (s) Time (s) Time (s) Est. Error

C−a
2 −0.90 1.04 55.06 5.88 0.64

L−a
3 −0.90 0.50 4.32 6.56 1.11

C−a
3 −0.90 0.20 3.02 3.64 0.13

R+a
7 +5.00 118.30 163.30 128.64 0.66

Centralized Diagnosis
Fault Magnitude Detection Isolation Conv. % Mean Param.

Time (s) Time (s) Time (s) Est. Error

C−a
2 −0.90 1.26 53.80 4.76 0.27

L−a
3 −0.90 0.50 3.98 5.08 0.49

C−a
3 −0.90 0.2 2.8 3.26 0.12

R+a
7 +5.00 196.8 377.4 115.6 0.48

circuit illustrates the accuracy versus efficiency trade-off due
to the factoring of the DBN into DBN-Fs.

VII. DISCUSSION AND CONCLUSIONS

PFs have been used extensively for system health mon-
itoring and diagnosis of hybrid systems [5], [14]. These
approaches, however, do not alleviate the sample impoverish-
ment problem, where low probability particles representing
the faulty state are dropped during the re-sampling process.
Several solutions have been proposed, e.g., [15] rank fault
hypothesis based on their likelihoods, and report the most
likely fault mode. Our approach to increasing them decreas-
ing the variance of the unknown faulty parameters, similar
to [11] addresses this issue successfully.

[16] propose an approach for combining look-ahead Rao-
Blackwellised PFs (RBPFs) with Livingstone 3 (L3) for
diagnosing faults in hybrid systems. The nominal RBPF-
based observer tracks the system evolution till a fault is
detected, after which L3 generates a set of fault candidates
that are then tracked by the fault observer (another RBPF).
All the fault hypotheses are included in the same model, and
tracked by the fault observer. In contrast, our approach exe-
cutes the qualitative and quantitative fault isolation schemes
in parallel, and uses separate fault models for each fault
candidate.

The BK algorithm, presented in [17], creates the individual
factors by eliminating causal links between weakly interact-
ing subsystems. The belief state derived from the individual
factors is an approximation of the true belief state, but the
error is bounded. But the bounds may not be sufficiently pre-
cise for online diagnosis, leading to missed alarms and less
precise diagnoses, or even false alarms and wrong diagnoses.
The Factored Particle Filtering (FPF) scheme [18] reduces
estimation errors by applying the particle filtering scheme to
the BK factored inference approach. Our distributed estima-
tion approach uses the particle filtering scheme for inference
using DBNs and preserves the overall system dynamics in
the factored form, and does not approximate the belief state.
Hence, we produce accurate state estimates efficiently.

The effectiveness of our approach relies on the assump-
tions that the sensors associated with measurements con-
verted to inputs are not faulty, and components whose pa-
rameters are used in the algebraic functions do not fail. In the
future, we seek to relax these assumptions. In addition, we
would like to analyze the accuracy, scalabality, and efficiency
of our methodology in large, industrial applications.
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