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Abstract: Robust and efficient estimation of hidden state variables of a system in the presence
of measurement noise and modeling errors is crucial for online model based fault diagnosis of
continuous systems. Dynamic Bayesian Networks (DBNs) provide generalized and systematic
methods for reasoning under uncertainty. This paper presents an approach to improve estimation
efficiency by partitioning the DBN into smaller factors and invoking estimation algorithms
on each factor independently. The factors are generated by replacing some state variables
with algebraic functions of some measurement variables, thus reducing the across-time links
between these state variables. Hence, given the measurements, these state variables become
conditionally independent of the state variables in other factors, and the states of each factor
can be estimated separately. This paper derives an algorithm for generating these factors and
presents experimental results to demonstrate the effectiveness of our factoring approach for
accurate estimation of system behavior.
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1. INTRODUCTION

Online detection and diagnosis of faults in engineering
systems is essential for guaranteeing their safe, reliable,
and efficient operation. Model-based diagnosis (MBD)
schemes, such as [Mosterman and Biswas, 1999] and
[Lerner et al., 2000], are preferred because they are more
general than heuristic and data driven schemes. But, mod-
eling inaccuracies and sensor noise must be accounted
for before MBD schemes can be applied to real-world
diagnosis problems. Probabilistic models, such as Dynamic
Bayesian Networks (DBNs) [Murphy, 2002], exploit the
conditional independence between system parameters and
variables to provide a compact representation for reasoning
about dynamic system behavior under uncertainty.

Diagnosis using DBNs involves solving the problem of
estimating the hidden state variables in a DBN model at
a time, t, using all measurement samples available up to
t [Murphy, 2002]. [Lerner et al., 2000] presents an approach
for the detection, isolation, and identification of abrupt
and incipient faults by estimating nominal and faulty state
variables. Exact state estimation is exponential in the
number of state variables in a DBN. Moreover, for non-
linear systems and noise models with non-Gaussian distri-
butions, analytic, closed form solutions for computation of
the posterior probabilities may not exist [Murphy, 2002].
Approximate estimation algorithms, such as the Boyen-
Koller (BK) algorithm [Boyen and Koller, 1998], and the
particle filter (PF) [Koller and Lerner, 2001], mitigate
this problem to some extent. In [Roychoudhury et al.,
2008], the authors combined a qualitative fault isolation

? This work was supported in part by the National Science Founda-
tion under Grant CNS-0615214 and NASA NRA NNX07AD12A.

scheme (that employs symbolic analysis of measurement
transients caused by faults) with a PF approach to reduce
the complexity of the overall diagnosis task. PF approaches
generalize traditional Kalman filter and extended Kalman
filter approaches, since it can be applied to models with
nonlinearities and arbitrary (non-Gaussian) probability
distributions [Murphy, 2002].

This paper presents an approach for further increasing
the estimation efficiency by partitioning the system DBN
into multiple non-overlapping DBN factors (DBN-Fs) and
invoking estimation algorithms on each DBN-F indepen-
dently. The DBN-Fs are generated by replacing some of
the state variables in the system DBN with algebraic func-
tions of measurements (now considered as system inputs).
Hence, the across-time links between these state variables
can be removed. As a result, state variables in one DBN-F
become conditionally independent of the state variables
in all other DBN-Fs, given the measurements used to
compute the values of the replaced state variables. This
conditional independence between the state variables in
each DBN-F serves as the basis for our truly distributed
estimation approach, where estimation algorithms are in-
voked on each DBN-F independently, while only communi-
cating some observed measurements between the factors.
This distributed approach reduces a large exponential es-
timation problem to a set of smaller problems, and thus
provides the framework for the gain in efficiency.

It is well-known that the state variables of a system can
be estimated from the system measurements only if the
system is observable. Traditional schemes of observability
analysis apply only to linear systems. To extend the
observability analysis to nonlinear systems, we adopt a
methodology for structural observability analysis that is



derived from a system’s bond graph model [Dauphin-
Tanguy et al., 1999]. Our partitioning scheme ensures that
every DBN-F models a structurally observable subsystem.
Hence, our distributed estimation scheme using DBN-Fs
produces results equivalent to those obtained using the
global DBN.

This paper presents an algorithm to systematically parti-
tion a system DBN into structurally observable DBN-Fs,
and describes how estimation efficiency can be improved
by applying a PF-based estimation scheme on each DBN-F
independently. Experimental results demonstrate how the
partitioning approach improves the efficiency of estimation
without sacrificing accuracy.

2. RELATED WORK

Distributed decentralized extended Kalman filter (DDEKF)
[Mutambara, 1998] is an exact estimation scheme which,
like our distributed approach, subdivides the estimation
problem into smaller problems. However, in DDEKFs,
each local component requires measurements and esti-
mates of state variables from other components to cor-
rectly estimate its states. As a result, the estimation algo-
rithm must be invoked concurrently on all subsystems to
ensure correct state estimates. On the other hand, by con-
struction, the state variables in a DBN-F are conditionally
independent of the state variables in all other factors, given
some measurements. So, our estimation scheme is truly
distributed since an estimation algorithm can be invoked
on each DBN-F independently, since the estimation of
state variables in one component does not depend on the
state estimates at other components. Also, the failures in
individual factors do not affect the estimates made at other
factors as long as the required measurements are available.

The BK algorithm, presented in [Boyen and Koller, 1998],
creates factors by eliminating causal links between weakly
interacting subsystems, and represents the belief state as
a product of these smaller factors. This removal of causal
links imply that the factored belief state is necessarily an
approximation of the complete belief state, and introduces
error in state estimates. The authors prove this error to
be bounded, but these bounds may not be sufficient to
eliminate delayed or missed fault detection and isolation.
In our factoring approach, we do not arbitrarily eliminate
causal dependencies. We eliminate the across-time causal
links to some state variables only if these state variables
can be computed in terms of some measurements. Hence,
our factoring scheme is not an approximation, and we
preserve the dynamics of the unfactored DBNs.

[Frogner and Pfeffer, 2008] presents heuristic techniques
for automatically decomposing a DBN into factors. This
results in lower estimation errors, but the computed fac-
tored belief state is still an approximation. The Factored
Particle Filtering (FPF) scheme [Ng and Peshkin, 2002]
further reduces estimation errors by applying the PF
scheme to the BK factored estimation approach. Our ap-
proach to factoring is based on analyzing the structural
observability of the system’s BG model. Because our fac-
toring scheme preserves the overall system dynamics in the
factored form, and every DBN-F is structurally observable
by design, our PF-based estimation scheme produces ac-
curate state estimates efficiently.

3. DYNAMIC BAYESIAN NETWORKS

A DBN is a compact representation of a Markov process
and can be represented as D = (X,U,Y), where X,
U, and Y are sets of stochastic random variables that
denote hidden (or state) variables, system input variables,
and measured variables in the dynamic system, respec-
tively [Murphy, 2002]. A DBN is a two-slice Bayesian
network, representing a snapshot of system behavior in
two consecutive time slices, t and t + 1. State variables
in the DBN model satisfy the first order Markov property,
i.e., P (Xt+1|Xt,Ut), which is derived from the causal links
Xt → Xt+1, Xt → X ′

t+1, and Ut → Xt+1, where X ′, X ∈
X and U ∈ U, and subscript t represents a variable at time
t. Similarly, the DBN observation model, P (Yt|Xt,Ut), is
derived from causal links, Xt → Yt and Ut → Yt, where
Y ∈ Y. Therefore, the state estimation problem is de-
fined as finding P (Xt+1|Y0:t+1) = αP (Yt+1|Xt+1,Ut) ×∑

Xt
P (Xt+1|Xt,Ut)P (Xt|Y0:t), where Y0:t denotes mea-

surement readings from time 0 to t, and α is the normal-
izing factor [Murphy, 2002].

3.1 Deriving DBNs for Physical Systems

We have developed an approach for deriving DBNs from
the temporal causal graph (TCG) models of physical sys-
tems [Lerner et al., 2000]. The TCG model is system-
atically derived from the bond graph model of the sys-
tem [Mosterman and Biswas, 1999]

The bond graph (BG) modeling paradigm provides a
framework for domain-independent, energy-based, topo-
logical modeling of physical processes [Karnopp et al.,
2000]. The nodes of a BG include energy storage (capaci-
tors, C, and inertias, I), dissipation (resistors, R), trans-
formation (gyrators, GY , and transformers, TF ), source
(effort sources, Se, and flow sources, Sf), and detection
(effort detectors, De, and flow detectors, Df) elements.
Nonlinear systems are modeled using parameter values
that are functions of other system variables. Bonds, drawn
as half arrows, with associated effort, e, and flow, f , vari-
ables, represent the power interaction pathways between
the bond graph elements, such that e×f defines the power
transferred through the bond. 0- and 1-junctions represent
idealized connections for lossless energy transfer between
two or more BG elements.

Fig. 1(b) shows the BG model of an electrical circuit
shown in Fig. 1(a). In the electrical domain, I elements
are inductors, C elements are capacitors, R elements
are resistors, flows represent current, e.g., f2 denotes
the current through L1, and efforts represent voltage
differences, e.g, e3 denotes the voltage across capacitor
C1. The observed measurements in the electric circuit are
the currents i1, i2, . . . , i8 and the voltages v1 and v2. The
battery, vbatt drives this circuit. In this system, the BG
parameters are assumed to be constant.

The temporal causal graph (TCG) of a system, systemati-
cally derived from its BG [Mosterman and Biswas, 1999],
captures the causal and temporal relations between system
variables through directed edges and their labels. Causality
establishes the cause and effect relationships between the
e and f variables of the bonds determined by constraints
imposed by the incident BG elements. Of special interest



(a) Schematic. (b) Bond graph.

(c) Temporal causal graph.

Fig. 1. Different representations of an electrical circuit.

are the energy storage elements, which can either impose
integral (preferred) or derivative causality. The sequential
causal assignment procedure (SCAP) systematically as-
signs the causality in a BG [Karnopp et al., 2000]. The
nodes in a TCG correspond to the power variables of
the system BG model. Fig. 1(c) shows the TCG for the
electrical circuit. The direction of a TCG edge and its
label are based on causality. For example, for a C element
in integral causality, e = (1/C)

∫
fdt, and hence the TCG

edge directed from the flow to the effort has a label dt/C,
with dt denoting a temporal relationship between f and
e. For a C element in derivative causality, the TCG edge
is directed from the effort to the flow, since f = Cde/dt,
and has a label C/dt.

We construct the system DBN from its TCG in integral
causality using the method outlined in [Lerner et al., 2000].
After we identify the TCG nodes, N, which include all
state variables, measured variables, and system inputs; for
each N ∈ N, we instantiate nodes Nt and Nt+1 in the
consecutive time slices of the DBN. Then, for every pair of
variables, N,N ′ ∈ N that are algebraically related, causal
links Nt → N ′

t and Nt+1 → N ′
t+1 are constructed in each

DBN time slice. For every pair of variables, N,N ′ ∈ N
having an integrating relation (i.e., a delay), the across-
time Nt → N ′

t+1 link is added to the DBN. Fig. 2(a) shows
the DBN for the electrical circuit, where thick-lined circles
denote state variables, thin-lined circles denote observed
variables, and squares denote input variables.

3.2 Observability

Correct estimation of dynamic system behavior is possi-
ble only if the system is observable, i.e., the values of
all the state variables in the system can be correctly
estimated from the knowledge of the system inputs and
outputs [Samantaray and Bouamama, 2008]. Therefore,
given a state-space representation of the system, with
Ẋ = f(X,U), and Y = g(X,U), a system is observable
if there exists a well-behaved function, h, such that, X =
h(Y,U), i.e., there exists |X| independent equations which
can be solved to correctly estimate the unknown X. Since
the variables in these equations are random variables, the
system of equations still represent a stochastic process.

Existing numerical approaches for determining observabil-
ity of a system are mostly applicable to linear systems.

(a) Full DBN. (b) 4-factored DBN. (c) 2-factored DBN.

Fig. 2. Factorings of the DBN of the electrical circuit.

The analysis of structural observability provides an elegant
approach to determine system observability by analyzing
the system bond graph model, rather than the system
parameter values [Dauphin-Tanguy et al., 1999]. A BG
is structurally observable if the following properties are
satisfied:

(1) In the preferred integral causality mode, there exists
at least one causal path from each I and C element
in integral causality to a sensor element De or Df .

(2) Inverting the causality of every I and C element
initially in integral (preferred) causality still produces
a valid causal assignment for the entire BG 1 .

In integral causality, the independent variables of C and
I elements are the state variables of the system [Karnopp
et al., 2000], and causal paths are directed from the state
variables to the measured variables. Therefore, a system’s
failure to satisfy Property 1 implies that for a subset of
the state variables, Xur ⊆ X, which will not influence the
state estimation process, since P (Y|X) = P (Y|X−Xur).
In [Dauphin-Tanguy et al., 1999], the authors have proven

1 In some situations, this may require changing a De or Df element
into their dual form.



that the satisfaction of Property 2 establishes that the
function h, such that X = h(Y,U), exists.

Since DBNs can be systematically derived from TCGs
generated from BGs, once a system is determined to be
observable through structural analysis of a system BG, a
DBN can be derived from this BG and a PF scheme can
be invoked on this DBN to accurately estimate its state
variables. We term a DBN to be observable if it represents
an observable system.

4. FACTORING A DBN FOR EFFICIENT
ESTIMATION

The basic idea of our factoring procedure involves identi-
fying state variables in the complete DBN system model
whose values are algebraic functions of at most r mea-
surements, where r is a user-specified parameter. If a
state variable can be algebraically computed from some
measurements, we can replace that state variable with
an algebraic function of these measurements, and remove
the across-time links involving the replaced state variable.
The removal of the across-time links enables partitioning
of the system DBN into smaller DBN-Fs, such that the
state variables in each DBN-F is conditionally indepen-
dent of the state variables in all other DBN-Fs, given the
measurements used to compute the value of some state
variables. The objective of our factoring scheme is to apply
this substitution repeatedly to remove as many across-
time links as possible to generate DBN-Fs that allow
accurate inferencing of system behavior when a estimation
algorithm is applied to each DBN-F separately. Therefore,
we need to ensure that every DBN-F in our factoring is
observable. We generate the most number of observable
DBN-Fs from a given system DBN through a two-step pro-
cedure: (i) generate maximal number of factors possible by
replacing every state variable which can be determined as
a algebraic function of at most r measurements, and (ii)
merge unobservable DBN-Fs with other factors till all of
the resultant factors are observable.

Consider the DBN shown in Fig. 2(b). If we assume r = 1,
we can determine the value of state variable f15 as an
algebraic function of voltage v1, i.e., f15 = h(v1) = v1/R6.
Therefore, as shown in Fig. 2(b), we replace f15 with the
input current v1/R6. Since, we no longer need the variables
f9, e13, f15, e19, and f21 to compute f15, the across-time
links to f15 can be removed. Similarly, we can trivially
determine the value of f9 and f21 in terms of measurements
i6 and i4, i.e., f9 = i6 and f21 = i3, and hence, remove
all across-time links to f9 and f21. Thus we generate
four factors for the DBN of the electrical circuit. For
this example, the two middle DBN-Fs are not observable,
since the single state variable in either of the two DBN-
Fs does not affect the observed variable, thereby violating
Property 1. However the factoring generated by merging
each unobservable DBN-F to its observable neighbor (see
Fig. 2(c)) results in a factoring where all DBN-Fs are
observable.

As outlined in Section 3.1, DBNs can be systematically
derived from the BG system models. Also, observability
of a system can be determined by structural analysis of
its BG. Therefore, our algorithm for generating maximal
number of observable DBN-Fs from a given DBN-F is

Algorithm 1 Generating factors of a DBN.
Input: System DBN, D
Generate maximal Factoring1 = {D1, D2, . . . , Dn}
SetOfFactorings = {Factoring1}
while true do

SetOfObsF = ∅; SetOfUnobsF = ∅;
for each Factoringi ∈ SetOfFactorings do

if every DBN-F in Factoringi is observable then
SetOfObsF = SetOfObsF ∪ Factoringi

else
SetOfUnobsF = SetOfObsF ∪ Factoringi

if SetOfObsF 6= ∅ then
BestFactoring = Factoringj ∈ SetOfObsF having the
most number of balanced DBN-Fs
exit

else
NextBestFactoring = Factoringj ∈ SetOfUnobs having
the most number of unobservable DBN-Fs

SetOfFactorings = all possible pairwise merging of the DBN-
Fs of NextBestFactoring

as follows: (i) partition the system DBN into maximal
possible DBN-Fs, (ii) map each generated DBN-F to a
BG factor (BG-F) and analyze the structure of this BG-
F to determine if the DBN-F is observable, and (iii)
merge every unobservable DBN-F with other DBN-Fs
till all DBN-Fs are observable. These steps are shown in
Algorithm 1, and presented in detail below. We assume
the unfactored system DBN to be observable, as otherwise,
no factoring with only observable DBN-Fs exist. Also, we
assume we have sufficient sensors to perform factoring.

4.1 Generating Maximal Factoring

Given the parameter r, we analyze the system DBN to
identify all state variables that can be computed from
single measurements, then pairs, triples, and so on, up to
r measurements. For example, if we consider r = 1, we can
express f15 = v1/R6, f2 = i8, f9 = i6, and so on. However,
we do not replace a state variable if the replacement
does not generate any new factors. For example, in the
maximally factored DBN shown in Fig. 2(b), replacing f2
with i8 does not generate any new factors, and hence, f2
is not replaced.

4.2 Testing Observability of DBN-Fs

Once the maximal number of DBN-Fs are generated, for
every DBN-F, Di, we generate a corresponding BG-F,
Bi, and consider Di to be observable if Bi is analyzed
to be structurally observable. Each Bi is constructed by
replacing every I or C element that corresponds to a
state variable that was replaced in the system DBN,
with a Se or Sf element, each modulated by at most
r measurements. Effectively, each replaced energy source
creates multiple independent subsystems, thus factoring
the BG into independent factors. Fig. 3(a) shows the
BG-Fs corresponding to the 4-factored DBN shown in
Fig. 2(b). The two outer BG-Fs are observable, since
their energy storage elements can be assigned preferred
derivative causality (albeit by dualizing an effort sensor
into a flow sensor, indicated by the shaded background,
in the first BG-F), and every state variable affects at least
one sensor. The two BG-Fs in the middle, however, are not



(a) 4-Factored BG.

(b) 3-Factored BG.

(c) 2-Factored BG.

Fig. 3. Factorings of the BG of the electrical circuit.

observable, since, the state variable in neither of the two
BG-Fs reach the flow sensor (whose value is determined by
the two flow sources on the 0-junction). Since all BG-Fs
are not observable in the maximal factoring, this factoring
cannot be used for correct estimation of states.

4.3 Merging Unobservable DBN-Fs

An unobservable DBN-F can be merged with other
DBN-Fs to generate an observable DBN-F. n DBN-Fs,
D1, D2, . . . , Dn, are merged by restoring the state variables
that were replaced to generate D1, D2, . . . , Dn, redrawing
the across-time links causal links involving these restored
state variables, and reintroducing the nodes corresponding
to the measurements that were used to compute these state
variables.

As shown in Algorithm 1, the merging procedure is invoked
if every DBN-F in the maximally factored DBN is not
observable. At every iteration step, we create new factor-
ings through all possible pairwise merging of unobservable
DBN-Fs into other DBN-Fs, with the goal of creating at
least one new factoring with all its DBN-Fs observable.
If multiple such factorings get created, we choose from
amongst them that factoring which has the most number
of balanced DBN-Fs, determined by comparing how close
the number of state variables in each of its DBN-F is to
the average number of state variables per DBN-F. If the
merging step does not generate any factorings with all
its DBN-Fs observable, we select the maximal factoring
with the largest number of factors and highest number
of unobservable DBN-Fs, and generate the next set of

No. of Factors → 1 2 4

Run 1 0.1591 0.1107 0.2034
Run 2 0.0681 0.1835 0.2389
Run 3 0.1215 0.0805 0.2495
Run 4 0.083 0.0952 0.1764
Run 5 0.0743 0.136 0.2121
Run 6 0.0788 0.2206 0.1518
Run 7 0.0974 0.1135 0.2206
Run 8 0.1581 0.1091 0.1671
Run 9 0.1556 0.2121 0.1659
Run 10 0.1467 0.1194 0.1824

Table 1. Average mean squared error over all
state variables.

factorings by pairwise merging of unobservable DBN-Fs
like before. This procedure is repeated till we obtain at
least one factoring having only observable DBN-Fs.

The unobservable DBN-Fs, shown in Fig. 2(b), can be
merged in two possible ways, the corresponding BG-Fs of
which are shown in Figs. 3(b) and 3(c). In Fig. 3(b), the
BG-F at the center is generated by merging the two central
BG-Fs in Fig. 3(a), and is not observable (since capacitor
C4 does not provide a consistent causal assignment when
it is assigned derivative causality). However, the two
factors in the factoring shown in Fig. 3(c) are observable,
and hence, we select the DBN-Fs (shown in Fig. 2(c))
corresponding to these BG-Fs as our desired factoring.

5. ESTIMATION USING FACTORED DBNS

We choose PF as our estimation algorithm for estimating
the values of state variables across time [Koller and Lerner,
2001]. A PF is a sequential Monte Carlo sampling method
for Bayesian filtering that approximates the belief state
of a system using a weighted set of samples, or parti-
cles [Arulampalam et al., 2002]. Each sample, or particle,
consists of a value for each state variable, and describes a
possible system state. As more observations are obtained,
each particle is moved stochastically to a new state, and
the weight of each particle is readjusted to reflect the
likelihood of that observation given the particle’s new
state. The PF algorithm used in this work follows the one
presented in [Koller and Lerner, 2001].

For estimating the states in n DBN-Fs D1, D2, . . . , Dn,
we distribute the estimation task amongst n PFs, each
running as an independent process. Each of these PFs
estimates Xi based on Yi and Ui. The PFs only com-
municate measurements

⋃
i Ui between themselves. The

PF for the DBN-F Di uses a |Xi|
|X| particles, where a is a

user-specified parameter. Given n DBN-Fs, we know that∑
i |Xi| < |X|, where X is the total number of states in

the complete system DBN. Therefore, the complexity of
estimating the states in each DBN-F is less that that of
estimating the states in the global DBN. Also, since the
estimation algorithms on the different factors are executed
simultaneously, the complexity of estimation is determined
by the complexity of estimating the states of the DBN-F
having the largest number of state variables.

6. EXPERIMENTAL RESULTS

We present a set of experimental results to evaluate if es-
timation using factored DBNs can improve computational



No. of Factors → 1 2 4

Time (s) 137.03 37.74 18.97

Table 2. Time taken for PF to complete esti-
mation.

efficiency without compromising accuracy. In this experi-
ment, all prior and conditional probabilities are assumed
to be Gaussian, and white Gaussian noise with zero mean
and variance of 1 W was added to all the measurements.

For this experiment, we tracked the state variables of
the three different DBN factorings shown in Fig. 2
for 10 runs. Given n DBN-Fs, Di = {Xi,Ui,Yi},
i = 1, 2, . . . , n, such that X = X1 ∪ X2 ∪ . . .Xn,
for each run we computed the estimation error: E =
1
|X|
∑

X∈X

(
1
T

∑T
t=0 (Xt −Xmodel

t )2
)

, where T is the total
simulation time, Xt denotes the estimated value of state
X at time t, and Xmodel

t denotes the actual value of state
X at time t obtained from the simulation model. Table 1
reports the errors obtained from each factoring for all runs.

Our primary goal for this experiment was to demonstrate
that the factoring scheme preserves the system dynamics.
Therefore, we hypothesized that the difference in errors
for the 2-factor and unfactored DBN would not be sta-
tistically significant, and the error for the 4-factor DBN
would be significantly larger than the unfactored DBN.
Further the difference in error for the 2-factor and 4-factor
DBNs would also be statistically significant. We ran t-
tests to establish significance of the differences. The tests
for significance indicated that the errors obtained using
the 2-factor DBN did not significantly differ from that
obtained using the unfactored DBN (p < 0.05), while
those obtained using the 4-factor DBN was significantly
greater (p < 0.05). The test of significance between the 2-
and 4-factor DBN showed that the error in the 4-factor
DBN was significantly larger (p < 0.05). Therefore, we
concluded that the 2-factor DBN preserves dynamics of
the unfactored DBN, whereas the 4-factor DBN, which
has unobservable factors, does not.

Table 2 shows the average time taken by the slowest PF
for each factoring to track system behavior for 1500 time
steps. The time taken by a PF depends on the number
of particles it uses. For our experiments, the number of
particles the PF for a factor used was proportional to the
number of states in that factor. Hence, PF for unfactored
DBN (with 1000 particles) took the most time, followed
by the PF on the larger DBN-F of the 2-factor DBN (with
500 particles). The least amount of time was taken by the
PFs applied to the 4-factor DBN, since its largest DBN-F
has 3 state variables, and hence, its PF used 300 particles.

7. DISCUSSION AND CONCLUSIONS

In this paper, we presented an approach to increase the
efficiency of estimation using DBNs by factoring the DBNs
into DBN-Fs, such that the state variables in every DBN-
F is conditionally independent from those in other DBN-
Fs, given the measurements communicated between these
factors, thus preserving the dynamics of the global sys-
tem behavior. Experimental results showed that factoring
maintains estimation accuracy in DBNs while improving
the efficiency of DBN estimation in the presence of sensor

noise. However, we need to evaluate the effect of sensor
faults in our estimation, especially if the faults are in
sensors that decouple two or more factors. Our intuition
is that the presence of a fault in such a sensor will affect
the estimation accuracy of the state variables in only those
factors which uses this sensor as an input. The estimation
accuracy of state variables in other factors will remain
unaffected by this sensor fault, because of their condi-
tionally independence from other state variables, given
the measurements used as system inputs. Future work
will therefore focus on applying this factoring scheme to
develop distributed diagnosis approaches for complex, real-
world systems, and evaluating estimation accuracy in the
presence of sensor faults.
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