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Abstract

This paper presents a distributed Bayesian fault diagnosis
scheme for physical systems. Our diagnoser design is based
on a procedure for factoring the global system bond graph
(BG) into a set of structurally observable bond graph fac-
tors (BG-Fs). Each BG-F is systematically translated into a
corresponding DBN Factor (DBN-F), which is then used in
its corresponding local diagnoser for quantitative fault detec-
tion, isolation, and identification. By construction, the ran-
dom variables in each DBN-F are conditionally independent
of the random variables in all other DBN-Fs, given a subset
of communicated measurements considered as system inputs.
Each DBN-F and BG-F pair is used to derive a local diag-
noser that generates globally correct diagnosis results by lo-
cal analysis. Together, the local diagnosers diagnose all single
faults of interest in the system. We demonstrate on an electri-
cal system how our distributed diagnosis scheme is compu-
tationally more efficient than its centralized counterpart, but
without compromising the accuracy of the diagnosis results.

1. INTRODUCTION
Online diagnosis schemes can help ensure the safe and

efficient operation of real-world engineering systems. How-
ever, many model-based diagnosis schemes are centralized,
and hence, expensive in memory and computational require-
ments. They also scale poorly to changes in system configura-
tion, and result in single points of failure. Distributed diagno-
sis schemes address the drawbacks of centralized schemes [1–
3]. This paper presents a distributed Bayesian scheme for di-
agnosing incipient (slow) and abrupt (fast) faults in system
parameters of physical systems, where each local diagnoser
communicates a minimal number of measurements with other
diagnosers to generate globally correct diagnosis results. To-
gether, the set of local diagnosers diagnose all single faults of
interest in the system.

The basis of our diagnoser design is the procedure for fac-
toring (or partitioning) the global system bond graph (BG)
into multiple independent bond graph factors (BG-Fs), each
of which is structurally observable [4]. These BG-Fs are
designed by identifying energy storage elements in integral
causality, the outgoing effort or flow of which can be com-
puted as an algebraic function of some sensor measurements.

Once these energy storage elements are identified, they are
replaced by modulated sources of flow or effort, whose mod-
ulation factors are based on the sensor readings so that their
output flows or efforts equal that of the output flow or effort
of the energy storage elements they replace. The integrals of
the effort or flow imposed by an energy storage element in in-
tegral causality represent the state variables in the state-space
model of dynamic systems. Hence, by replacing the subset
of energy storage elements with modulated sources, the state
variables are decoupled by considering measurements on the
path (i.e., the relation) between two state variables. Given
these measurements, the state variable value computation at
each time step depends on the measurement values (now con-
sidered inputs) and not the other state variables. Thus each
BG-F is decoupled across time from all other BG-Fs, given
the subset of measurements now considered inputs.

In our work, we translate BG-Fs into Dynamic Bayesian
Networks Factors (DBN-Fs), which provide a systematic
method for modeling uncertainty in the behavior of dynamic
systems [5]. Applying the factoring approach produces struc-
turally observable BG-Fs, which are systematically converted
to DBN-Fs using the procedure presented in [6]. Each DBN-F
and BG-F pair is used to derive a local diagnoser. We imple-
ment a particle filter (PF)-based inference approach [7] on
each DBN-F for fault detection, isolation and identification,
and use the BG-F for qualitative fault isolation. By construc-
tion, the random variables in each DBN-F are guaranteed
to be conditionally independent of the random variables in
all other DBN-Fs, given a subset of communicated measure-
ments considered as system inputs. Therefore, each local di-
agnoser operates independently given the measurements and
generates local diagnostic hypotheses that are provably cor-
rect globally.

Our approach combines the DBN-based quantitative di-
agnosis scheme with a qualitative fault isolation scheme to
further improve diagnosis efficiency. We demonstrate on an
electrical system how our distributed diagnosis approach is
computationally more efficient than its centralized counter-
part, but without compromising the accuracy of diagnosis.

2. MODELING FOR DIAGNOSIS
In our work, we systematically derive the diagnosis mod-

els for fault isolation in the form of temporal causal graphs



(a) Schematic.

(b) Dynamic Bayesian Net-
work.

(c) Two-Factored Dynamic
Bayesian Network.

(d) Bond graph.

(e) Two-Factored bond graph with imposed derivative causality.

Figure 1. Models of the twelfth-order electrical system.

(TCGs) [8], and DBN-Fs for fault detection, isolation, and
identification [9, 10]. All of these models are derived from
the system’s BG model [11]. Fig. 1(d) shows the BG of a
twelfth-order electrical circuit shown in Fig. 1(a). In the elec-
trical domain, the effort variables denote voltage difference
across, and flow variables denote current through, BG ele-
ments. For example, f2 = i1 denotes the current through the
inductor L1, and e7 = v2 denotes the voltage difference across
resistor R1. e1 = vbatt denotes the voltage imposed by the volt-
age supply. Effort and flows are measured using sensor ele-
ments, e.g., De : v2 is a voltage sensor. For every C element in
integral causality, the corresponding state variable is the dis-
placement variable, q, such that q̇ = f . Similarly for every I
element in integral causality, the corresponding state variable
is the momentum variable, p, such that ṗ = e.

BGs represent a parameterized energy-based model of
physical systems. Faults are defined as changes in the nom-
inal parameter values. An incipient fault is a slow change in
a system parameter, p (with nominal parameter value func-
tion, p(t)), and modeled as a linear function with a constant
slope, ∆i

p, added to the nominal component parameter value
function, p(t), i.e., p±i(t) = p(t)± ∆i

p × (t − t f ), t > t f ,where
t f is the time of fault occurrence, and p±i(t) is the tempo-
ral profile of parameter p with an incipient fault [10]. An
abrupt fault is modeled as an addition of a constant persis-
tent bias term, ∆a

p · p(t), to the nominal parameter value, p(t),
i.e., p±a(t) = p(t)±∆a

p · p(t), t > t f ,where ∆a
p is the percentage

change in the parameter expressed as a fraction, and p±a(t) is
the temporal profile of parameter p with an abrupt fault [10].

A TCG, automatically derivable from a BG [8], is essen-
tially a signal flow graph that captures the causal and temporal
relations between its nodes, which represent system variables
(effort and flow values), through directed edges and their la-
bels. The direction of a TCG edge and its label are based on
causality, which establishes the cause and effect relationships
between the ei and fi variables of a bond i based on con-
straints imposed by the incident BG elements.

A DBN is a directed acyclic graph structure that represents
a probabilistic discrete-time model of a dynamic system. A
DBN can be defined as D = (X,U,Y), where X, U, and Y
are sets of stochastic random variables that denote (hidden)
state variables, system input variables, and measured vari-
ables in the dynamic system, respectively [5]. Links between
nodes denote causal dependencies between nodes within a
time step and across time steps. Graphically, a DBN is a two-
slice Bayesian network, representing a snapshot of system
behavior in two consecutive time slices, t and t + 1. Each
DBN time-slice represents the Markov process observation
model, P(Yt |Xt ,Ut), while the across-time links represent
the Markov state-transition model, P(Xt+1|Xt ,Ut). DBNs ex-
ploit the conditional independence between system variables
to provide a compact system representation for reasoning
about dynamic systems behavior in the presence of uncer-
tainty. Bayesian inference algorithms have been widely used



Figure 2. The distributed diagnosis architecture.

for diagnosis of dynamic systems represented as DBNs. The
system DBN is constructed from its TCG in integral causal-
ity using the method given in [12]. Fig. 1(b) shows the DBN
for our example circuit, where thick-lined circles denote state
variables, thin-lined circles denote observed variables, and
squares denote input variables.

3. DISTRIBUTED DIAGNOSIS APPROACH
Our diagnosis approach, whose architecture is shown in

Fig. 2, has three primary components [10]: (i) fault detection,
(ii) qualitative fault isolation (Qual-FI), and (iii) quantitative
fault hypothesis refinement and identification (Quant-FHRI).

A fault is detected when the measurement residual, i.e. the
difference between the observed (faulty) and estimated (nom-
inal) values of any measurement is determined to be statisti-
cally significant using a Z-test [13]. A PF-based observer im-
plemented on the “nominal” DBN-F for each local diagnoser
estimates the nominal system behavior. Nominal DBN-Fs are
generated from the nominal BG-Fs that are obtained from the
nominal global BG, and include only the state and measure-
ment variables as random variables. The system parameters
are deterministic. A PF is a sequential Monte Carlo sampling
method for Bayesian filtering that approximates the belief
state of a system using a weighted set of samples, or parti-
cles [7]. Each sample, or particle, consists of a value for each
state variable, and describes a possible system state. As more
observations are obtained, each particle is moved stochasti-
cally to a new state, and the weight of each particle is read-
justed to reflect the likelihood of that observation given the
particle’s new state.

The Qual-FI module is activated once a fault is detected,
and the symbol generator starts encoding if the magnitude
and slope of each measurement has increased, decreased,
or remained unchanged from nominal, using qualitative ‘+’,
‘−’, or ‘0’ symbols [13], respectively. In parallel, all fault hy-
potheses, i.e., the abrupt and incipient parameter changes that
explain the observed deviations, are identified by propagating
the first observed measurement-deviation backwards along
the TCG. Then, for each fault hypothesis, the fault signature,
i.e., its expected effect on magnitude and slope of the mea-

surement residuals (encoded as qualitative ‘+’, ‘−’, and ‘0’
symbols), is determined, by propagating the parameter devia-
tion forward along the TCG. For example, the fault signature
of a fault, say p+a, for a measurement m1 can be (+−), denot-
ing a discontinuous increase followed by a gradual decrease
in m1 if fault p+a occurs. The true fault can be isolated by
removing fault hypotheses whose signatures are inconsistent
with the observed measurement symbols. The Quant-FHRI
scheme is invoked when the fault hypothesis set is refined to
a pre-defined size, k, or a pre-specified s simulation timesteps
have elapsed.

The Quant-FHRI performs both fault hypothesis refine-
ment and identification if multiple fault hypotheses remain
when Quant-FHRI is initiated. If however, the Qual-FI has
refined the set of hypotheses to a singleton, Quant-FHRI per-
forms the task of fault identification only. For each fault hy-
pothesis that remains at the time Quant-FHRI is initiated, a
faulty DBN-F is generated by extending the nominal DBN-F
to include the fault parameter as a stochastic variable in the
DBN-F, as explained in [10]. A PF is then implemented on
each DBN-F fault model to track the faulty observed behav-
ior, taking as input the measurements from time td − ∆max

t ,
where ∆max

t ≥ td− t f is the maximum delay possible between
the time of fault occurrence, t f , and the time of fault detection,
td . We start tracking the faulty DBN-Fs from time td −∆max

t
because once the fault has occurred, and till the magnitude of
the fault is correctly identified, the system model is unknown
to us. If we started tracking faulty measurements from time
td onwards, our tracking will be off, since we would possibly
start at wrong initial state, especially for the unknown fault
variable. The idea is that if ∆max

t is set to be at least as large
as td− t f , then the time of actual fault occurrence will be be-
tween td − ∆max

t and td , and our initial state setting will be
closer to the correct value, since it is based on state estimates
from a known system model.

For each PF, a Z-test is used to determine if the devia-
tion of a measurement estimated by the PF from the cor-
responding actual observation is statistically significant. As
more observations are obtained, ideally the PF using the cor-
rect fault model will eventually converge to the observed
measurements, while the observations estimated using the in-



correct fault models will gradually deviate from the observed
measurements. Since even the correct fault model will need
some time before the particles start converging to the ob-
served measurement values, we need to delay the invocation
of the Z-tests for sd time steps, as otherwise, they may in-
dicate a deviation from observed measurements at the very
onset for all fault models. A fault hypothesis is removed from
consideration if: (i) the Qual-FI drops that fault candidate, or
(ii) the measurements estimated by that fault model signif-
icantly deviates from the observed faulty measurements. We
typically assume that the particles for the true fault model will
converge to the observed measurements within sd time steps
of its invocation. Since the fault magnitude is included as a
stochastic variable in every fault model, the magnitude of the
true fault (i.e., the % bias, ∆a

p, or, the slope, ∆i
p) is considered

to be that estimated by the PF for the true fault model.

4. DESIGNING THE LOCAL DIAGNOSERS
The objective of our distributed diagnosis scheme is to

generate globally correct diagnosis results without a central-
ized coordinator, and by communicating a minimal number
of measurements between diagnosers. We achieve this objec-
tive by first factoring the system BG into maximal number of
structurally observable [4] BG-Fs; generating a DBN-F for
each BG-F; and incorporating each BG-F and DBN-F pair in
its corresponding local diagnoser. The detailed procedure for
generating the local diagnosers is given in [6].

These BG-Fs are designed by replacing energy-storage
I and C elements by modulated sources of flow or effort,
respectively. The modulated sources of effort and flow are
computed as algebraic functions of observed measurements.
Fig. 1(d) shows complete BG of the electrical circuit. The
available measurements in this circuit are current values,
i1, i2, . . . , i4 and voltages v1,v2, . . . ,v6. Fig. 1(e) shows the two
BG-Fs that the global BG is factored into. It is evident from
Fig. 1(a) that the current through the inductor L5 is equal to
v3/R3. Hence, we can replace f35 in Fig. 1(d) with modulated
MS f = v3/R3 and create the two BG-Fs shown in Fig. 1(e).
If any BG-F is structurally unobservable, it is merged into
another BG-F, and this process is repeated till all of the BG-
Fs are structurally observable. The replacement of a subset
of energy storage elements with modulated source elements,
effectively replaces some state variables by algebraic func-
tions of some measured variables now considered as inputs.
As the values of these state variables can now be computed
at every time step, the dependence of these state variables on
the values of other state variables at earlier time instances is
removed, and thus, the state variables in each BG-F is de-
coupled across time from all other BG-Fs, given the sensor
measurements.

Structural observability of a BG-F can be determined us-
ing the procedure described in [4]. A system is structurally

observable if in its BG, (i) there exists at least one causal
path for each I and C element in the preferred integral causal-
ity to a sensor element De or D f , indicating that all state-
variables eventually influence a sensor, and (ii) inverting the
causality of every I and C element initially in integral (pre-
ferred) causality still produces a valid causal assignment for
the entire BG, indicating that a system of equations can be
derived from the BG that causally relates the measurements
to the state-variables, and which can be solved to determine
the value of the state-variables based on the measurements. In
some situations, obtaining a valid causal assignment for the
BG in derivative causality may require changing a De or D f
element into their dual form. Both the BG-Fs shown in 1(e)
are structurally observable as they fulfill both the conditions
necessary for structural observability mentioned in [6]. Note
that the current sensor i1 had to be dualized to assign deriva-
tive causality to the BG-F on the left in Fig. 1(e). Since the
two BG-Fs shown in Fig. 1(e) are structurally observable, we
do not require any further merging in our particular example.

On obtaining the maximal number of structurally observ-
able BG-Fs, each BG-F is converted into a DBN-F. By con-
struction, the random variables in each DBN-F are condition-
ally independent from those in other DBN-Fs given the subset
of measurements now considered system inputs. Because our
DBN-Fs are generated from structurally observable BG-Fs,
our factored inference scheme generates accurate inference
results. A DBN-F, D j = (X j,U j,Y j), is termed condition-
ally independent of other DBN-Fs, Dk(Xk,Uk,Yk) (k 6= j),
given its inputs, U j, if every random variable in D j is con-
ditionally independent of all other variables in Dk given U j.
Fig. 1(c) shows the DBN-Fs corresponding to the two BG-Fs
in Fig. 1(e). Note that in the DBN-Fs, the state variable p35
is replaced by the input v3L5/R3. Since, v3/R3 can be mea-
sured at every time step, all causal links directed into p35 are
removed. As a result, given v3L5/R3, every variable in one
DBN-F is conditionally independent of the variables in the
other DBN-F. Thus, the two generated DBN-Fs are condi-
tionally independent. In the factored DBN, we do not replace
state variables, such as, p2 with i1L1, since this replacement
does not yield any additional factors in Fig. 1(c). Moreover,
we do not replace state variables p10 and q29 with i2L3 and
v5C4, respectively, since we assume that inductor L3, and ca-
pacitor C4 can become faulty. We can see that the DBN-Fs
shown in Fig. 1(c) map to the BG-Fs shown in Fig. 1(e).

Once we generate m DBN-Fs, D1, D2, . . . Dm, from m
structurally-observable BG-Fs, B1,B2, . . . ,Bm, a local diag-
noser, Di, is constructed based off the corresponding DBN-F,
Di, and BG-F, Bi. Recall, as shown in Fig. 2, our distributed
diagnosis approach is implemented by each Di, independent
of the other diagnosers, as presented in the previous section: a
PF applied to the nominal DBN-F, Di, is used as the nominal
observer for fault detection; a TCG generated from the cor-



responding BG-F, Bi, is used for Qual-FI; and PFs applied to
faulty DBN-Fs generated by extending Di with faulty param-
eters as additional state variables, are used for Quant-FHRI.

5. IMPLEMENTING THE LOCAL DIAG-
NOSERS

Once designed, each local diagnoser, Di, implements a PF
on the nominal DBN-F, Di, to estimate the nominal system
behavior. Each of these particle filters takes as inputs, Ui,
and estimates Xi based on the observed measurements, Yi.
Note that a diagnoser Di’s inputs, Ui, may include some of
the inputs to the global system, i.e., Ui ∩U 6= ∅, as well as
some measurements now considered inputs, i.e., Ui∩Y 6=∅.
Two diagnosers D j, Dk communicate, or share, a measure-
ment Y ∈Y if Y ∈U j∧Y ∈Uk, i.e., measurement Y is an input
to both D j and Dk. Since there is a one-to-one correspondence
between DBN-F, Di, and local diagnoser, Di, only measure-
ments (∪iUi)−U are shared, or communicated, between the
particle filter-based observers for each Di. Further, the parti-
cle filter for the DBN-F Di is designed to use a |Xi|

|X| particles,
where a is a user-specified parameter. Given m DBN-Fs, we
know that ∑i |Xi| < |X|, where X is the total number of state
states in the complete system. Once a Z-test indicates statisti-
cally significant deviation of estimate nominal behavior from
the observed behavior, a fault is detected in a local diagnoser,
Di. Once a fault is detected by Di, fault hypotheses are gener-
ated by backward propagation of observed measurement de-
viation along the TCG obtained from the the BG-F, Bi, corre-
sponding to DBN-F, Di. The same TCG is also used for gen-
erating fault signatures. Typically, once Qual-FI refines the
fault hypothesis set to a smaller set, Quant-FHRI is initiated
on the remaining fault hypotheses. A faulty DBN-F is gener-
ated for each remaining fault hypothesis by including the fault
parameter as an additional state variable in Di. Quant-FHRI
then uses PFs implemented on the different faulty DBN-Fs
to track the faulty behavior and isolate and identify the true
fault.

Recall the computational architecture of our distributed
Bayesian fault diagnosis approach shown in Fig. 2. Each local
diagnoser, Di, essentially implements a combined qualitative-
quantitative scheme for diagnosing incipient and abrupt
faultsṠince, a local diagnoser operates independently of other
diagnosers, the complexity of tracking using each DBN-F is
less that that of tracking using the global DBN. Also, since
the inference algorithms on the different factors are executed
simultaneously, the total complexity of inference reduces to
the complexity of inference of the particle filter with the
maximum number of particles. The reduction of complex-
ity is based on the assumptions that the sensors associated
with measurements used to modulate the source elements in
BG-Fs will not be faulty, and the components whose param-
eters are used in the algebraic functions are assumed not to

Table 1. Fault Signatures for Local Diagnosers D1 and D2

Diagnoser D1
Fault i1 i2 i3 v1 v2

C−a
2 , C−i

2 , R+a
2 , R+i

2 0−0− 0− 0+ 0+
L−a

2 0+0− 0−−+−+
L−i

2 0+0− 0− 0− 0−
L−a

3 0++−+−−∗−+
L−i

3 0+0+ 0+ 0− 0−
L−a

4 0+0+−+0− 0−
L−i

4 0+0+ 0− 0− 0−

Diagnoser D2
Fault i4 v4 v5 v6

C−a
3 , R+a

4 0++−0+ 0+
C−i

3 , R+i
4 0+ 0+ 0+ 0+

C−a
4 0− 0++−+−

C−i
4 , R+a

6 , R+i
6 0− 0+ 0+ 0+

L−a
7 −+0− 0− −∗

L−i
7 0− 0− 0− 0−

R+a
7 0− 0+ 0−+−

R+i
7 0− 0+ 0− 0+

fail. Therefore, there is a trade-off for robustness to gain effi-
ciency.

Also, since the local diagnosers incorporate conditionally
independent DBN-Fs, we can argue that the local diagnosers
generate globally correct diagnosis results without any global
coordinator. Given that the fault DBN-Fs are constructed
based off conditionally independent DBN-Fs, and local diag-
nosers share minimal measurements with one another, a fault,
φ ∈ Fj, is only detected by diagnoser D j, and all other diag-
nosers, Dk, k 6= j, will not detect the fault. Hence, they are
not activated, even though the effect of fault φ may prop-
agate to all other factors. Basically, a diagnoser Di is acti-
vated when it detects a fault. In general, let us assume that
the observer in diagnoser Di uses the state space equations
X̂it+1 = Gi(Xit ,Uit ), and Ŷit = Hi(Xit ,Uit ). Now, a fault in
BG-F, Bk implies that functions Gk and Hk do not correctly
represent the actual system any more. As a result, Ŷk 6≈ Yk,
and a fault is eventually detected by Dk. The effects of a fault
in Bk can propagate to another BG-F B j, j 6= k, through their
shared inputs, (U j ∩Uk)−U, iff Bk and B j communicate at
least one measurement, but, since we adopt the single-fault
assumption, and since by construction, two BG-Fs can never
share any parameters, the state space representations G j and
H j of all other BG-Fs, B j, j 6= k, will correctly represent
the actual system dynamics of each BG-F. Hence, Ŷ j ≈ Y j,
i.e., the observers in other diagnosers will correctly track the
faulty measurement, and hence no fault will be detected. Con-
sequently, the diagnoser does not get activated unless a fault
is detected.

6. EXPERIMENTAL RESULTS
This section presents experimental results of our dis-

tributed diagnosis scheme applied to the electrical system
shown in Fig. 1(a). Two local diagnosers, D1 and D2 are de-
signed for the two DBN-Fs shown in Fig. 1(c). These two di-
agnosers communicate voltage measurement v3 between each
other. Table 1 shows the possible faults that must be diag-
nosed by each diagnoser, and the fault signatures for the mea-
surements available to each diagnoser.

We present an experimental run for diagnosing an abrupt
fault in C2, C−a

2 , with ∆a
C2

= −0.9, introduced at time, t =
100 s. As shown in Fig. 3, a negative deviation is noticed in
measurement i3 at t = 101.4 s. Based on this deviation, the
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Figure 3. Detection of C−a
2 fault by diagnoser D1.
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Figure 4. Tracking observations in the presence of C−a
2 fault by diagnoser D2.

fault hypothesis set, {C−i
2 ,C−a

2 ,R+a
2 ,R+i

2 ,L−i
2 ,L−a

2 ,L−i
4 ,L−a

4 },
is generated. At t = 102.9 s, a negative deviation is ob-
served in measurement i2, which is inconsistent with the
fault signatures of faults L−a

4 and L−i
4 for i2 (see Table 1).

Hence, L−a
4 and L−i

4 are removed from the fault hypothesis
set. Similarly, L−a

4 is becomes inconsistent at time t = 102.9 s,
when the deviation in i3 is confirmed to be a gradual de-
crease. At t = 106.7 s, the fault hypothesis set is refined
to {C−i

2 ,C−a
2 ,R+a

2 ,R+i
2 } when v2 shows a positive deviation.

Since these fault hypotheses cannot be further refined through
Qual-FI alone, Quant-FHRI is initiated. The second diagnoser
does not detect any fault. We start tracking the observed mea-
surements from time t = 97.5 s, and instantiate two PFs, one
using a DBN-F model for fault C−i

2 /C−a
2 (see Fig. 5(a)), and

the other using a DBN-F model for fault R+i
2 /R+a

2 (Figs. 5(b)),
with parameters C2 and R2 introduced as additional state vari-
ables in the nominal DBN-Fs shown in Fig. 1(c).

Fig. 6 shows the sum of mean squared estimation errors
obtained using the two different fault models. This error is
identified to be statistically significant at t = 101.3 s and t =
101.9 s, for the C−a

2 /C−i
2 and R+a

2 /R+i
2 DBN-Fs, respectively.

However, as noted earlier, the PF estimates made using the
correct C2 fault model eventually converges to the observed
measurements at t = 105.0 s (which is within sd = 150 s),
while the estimates using the R2 DBN fault model do not con-
verge even after sd = 150 s. Hence the true fault is isolated to
be C±a

2 /C±i
2 fault at t = 251.3 s. We run a window-based Z-

test on the difference between the known nominal parameter
value and the estimated state variable to determine whether
the fault is an abrupt or incipient fault in C2. At t = 171.7 s,
the statistical test shows that the estimated parameter evolves

in a (−0) manner, implying it is an abrupt fault, and that it
converges. By taking a mean of the values for 20 time steps
after the abrupt fault is isolated, we obtain ∆a

C2
=−0.897. The

estimate for the faulty parameter is shown in Fig. 6(c).
Tables 2 and 3 summarize the results of some distributed

and centralized diagnosis experiments, respectively, we ran
on the electrical circuit example, averaged over 5 runs. This
table shows that compared to the centralized diagnosis ap-
proach, the distributed diagnosis approach results in compara-
ble (albeit larger) parameter estimation errors. The distributed
approach also takes longer to converge to correct parameter
values. We attribute this difference to the proportional distri-

(a) DBN-F Fault model for
C−a

2 /C−i
2 .

(b) DBN-F Fault model for
R+a

2 /R+i
2 .

Figure 5. DBN-F Fault models for distributed diagnosis ex-
periments.
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Figure 6. Quant-FHRI using C2 and R2 DBN-F fault models.

Table 2. Results of Distributed Diagnosis Experiments on
the Twelfth-Order Electrical Circuit with Particles Used Pro-
portional to The Total Number of States per Factor

Fault Magnitude Det. Iso. Conv. % Mean Param.
Time (s) Time (s) Time (s) Est. Error

C−a
2 −0.90 1.04 55.06 5.88 0.64

C−i
2 −0.55 37.3 53.90 19.80 39.74

L−a
3 −0.90 0.50 4.32 6.56 1.11

L−i
3 −0.05 50.40 82.50 23.76 21.14

C−a
3 −0.90 0.20 3.02 3.64 0.13

R+a
7 +5.00 118.30 163.30 128.64 0.66

Table 3. Results of Centralized Diagnosis Experiments on
the Twelfth-Order Electrical Circuit

Fault Magnitude Det. Iso. Conv. % Mean Param.
Time (s) Time (s) Time (s) Est. Error

C−a
2 −0.90 1.26 53.80 4.76 0.27

C−i
2 −0.55 32.82 53.80 11.52 6.05

L−a
3 −0.90 0.50 3.98 5.08 0.49

L−i
3 −0.05 49.62 82.9 12.40 5.50

C−a
3 −0.90 0.2 2.8 3.26 0.12

R+a
7 +5.00 196.8 377.4 115.6 0.48

bution of particles based on the size of each factor, keeping
the sum total of particles used by all the PFs the same, as
well as, the use of a noisy sensor to compute the value of a
state variable. If the individual local diagnosers are executed
on different processors, then we can increase the number of
particles for each diagnoser, and our intuition is that this will
improve the estimation accuracy and identification time of the
local diagnosers. Also, our experimental results illustrates the
accuracy versus efficiency trade-off of our distributed diagno-
sis scheme, because, as explained earlier, by construction, if
each local diagnoser is implemented on a separate process,
the worst case efficiency of our distributed diagnosis scheme
is better than that of the centralized diagnosis scheme.

7. DISCUSSION AND CONCLUSIONS
Our approach is similar to the third protocol in [2], which

generates correct results without a coordinator. But, unlike
the approach presented by [1], each individual local diagnoser
needs to communicate only the minimal number of measure-

ments, and not diagnosis results, from other diagnosers to
generate globally correct diagnosis results.

In [14], a combined qualitative-quantitative diagnosis ap-
proach is presented in which a look-ahead Rao-Blackwellised
PF (RBPF) is first used to track system evolution, till a fault
is detected, after which the consistency-based Livingstone 3
(L3) generates a set of fault candidates that are then tracked
by the fault observer (another RBPF). All the fault hypothe-
ses are included in the same model, and tracked by the fault
observer. In contrast, our approach executes the qualitative
and quantitative fault isolation schemes in parallel, and uses
separate fault models for each fault candidate.

PFs have been used extensively for centralized system
health monitoring and diagnosis applications [7, 12]. Dis-
tributed inference schemes, such as the BK algorithm [15],
creates individual factors by eliminating causal links between
weakly interacting subsystems. Therefore, the belief state de-
rived from the individual factors is an approximation of the
true belief state. The error in this approximation is bounded,
but these bounds may not be sufficiently precise for online
diagnosis, since they may result in missed alarms and less
precise diagnoses in the best case scenario, and false alarms
and wrong diagnosis in the worst case scenario. The Factored
Particle Filtering (FPF) scheme [16] further reduces estima-
tion errors by applying the particle filtering scheme to the BK
factored inference approach. Our distributed estimation ap-
proach uses the particle filtering scheme for inference using
DBNs and preserves the overall system dynamics in the fac-
tored form, and does not approximate the belief state. Hence,
we produce accurate state estimates efficiently.

The effectiveness of our approach relies on the assump-
tions that the assumptions of sensors associated with mea-
surements converted to inputs are not faulty, and components
whose parameters are used in the algebraic functions do not
fail. In the future, we seek to relax these assumptions. In ad-
dition, we would like to apply our diagnosis approach to a
large real-world system to analyze the scalability and effi-
ciency of our methodology. We would also like to improve the



efficiency of our diagnosis approach further by ensuring that
the BG-Fs are so chosen such that minimal number of fault
hypotheses remain at the end of the Qual-FI step. Finally, we
would like to investigate what would be a good trade-off be-
tween the number of sensors needed for an “optimal” decom-
position and the costs induced by having a large number of
sensors.
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